The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

501-520hit(2923hit)

  • Data-Adapted Volume Rendering for Scattered Point Data

    Junda ZHANG  Libing JIANG  Longxing KONG  Li WANG  Xiao'an TANG  

     
    LETTER-Computer Graphics

      Pubricized:
    2017/02/15
      Vol:
    E100-D No:5
      Page(s):
    1148-1151

    In this letter, we present a novel method for reconstructing continuous data field from scattered point data, which leads to a more characteristic visualization result by volume rendering. The gradient distribution of scattered point data is analyzed for local feature investigation via singular-value decomposition. A data-adaptive ellipsoidal shaped function is constructed as the penalty function to evaluate point weight coefficient in MLS approximation. The experimental results show that the proposed method can reduce the reconstruction error and get a visualization with better feature discrimination.

  • Survey of Cloud-Based Content Sharing Research: Taxonomy of System Models and Case Examples Open Access

    Shinji SUGAWARA  

     
    INVITED SURVEY PAPER-Network System

      Pubricized:
    2016/10/21
      Vol:
    E100-B No:4
      Page(s):
    484-499

    This paper illustrates various content sharing systems that take advantage of cloud's storage and computational resources as well as their supporting conventional technologies. First, basic technology concepts supporting cloud-based systems from a client-server to cloud computing as well as their relationships and functional linkages are shown. Second, the taxonomy of cloud-based system models from the aspect of multiple clouds' interoperability is explained. Interoperability can be categorized into provider-centric and client-centric scenarios. Each can be further divided into federated clouds, hybrid clouds, multi-clouds and aggregated service by broker. Third, practical cloud-based systems related to contents sharing are reported and their characteristics are discussed. Finally, future direction of cloud-based content sharing is suggested.

  • A Saturating-Integrator-Based Behavioral Model of Ring Oscillator Facilitating PLL Design

    Zule XU  Takayuki KAWAHARA  

     
    BRIEF PAPER

      Vol:
    E100-C No:4
      Page(s):
    370-372

    We propose a Simulink model of a ring oscillator using saturating integrators. The oscillator's period is tuned via the saturation time of the integrators. Thus, timing jitters due to white and flicker noises are easily introduced into the model, enabling an efficient phase noise evaluation before transistor-level circuit design.

  • A Novel Label Aggregation with Attenuated Scores for Ground-Truth Identification of Dataset Annotation with Crowdsourcing

    Ratchainant THAMMASUDJARIT  Anon PLANGPRASOPCHOK  Charnyote PLUEMPITIWIRIYAWEJ  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    750-757

    Ground-truth identification - the process, which infers the most probable labels, for a certain dataset, from crowdsourcing annotations - is a crucial task to make the dataset usable, e.g., for a supervised learning problem. Nevertheless, the process is challenging because annotations from multiple annotators are inconsistent and noisy. Existing methods require a set of data sample with corresponding ground-truth labels to precisely estimate annotator performance but such samples are difficult to obtain in practice. Moreover, the process requires a post-editing step to validate indefinite labels, which are generally unidentifiable without thoroughly inspecting the whole annotated data. To address the challenges, this paper introduces: 1) Attenuated score (A-score) - an indicator that locally measures annotator performance for segments of annotation sequences, and 2) label aggregation method that applies A-score for ground-truth identification. The experimental results demonstrate that A-score label aggregation outperforms majority vote in all datasets by accurately recovering more labels. It also achieves higher F1 scores than those of the strong baselines in all multi-class data. Additionally, the results suggest that A-score is a promising indicator that helps identifying indefinite labels for the post-editing procedure.

  • An Improved Multivariate Wavelet Denoising Method Using Subspace Projection

    Huan HAO  Huali WANG  Naveed ur REHMAN  Liang CHEN  Hui TIAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:3
      Page(s):
    769-775

    An improved multivariate wavelet denoising algorithm combined with subspace and principal component analysis is presented in this paper. The key element is deriving an optimal orthogonal matrix that can project the multivariate observation signal to a signal subspace from observation space. Univariate wavelet shrinkage operator is then applied to the projected signals channel-wise resulting in the improvement of the output SNR. Finally, principal component analysis is performed on the denoised signal in the observation space to further improve the denoising performance. Experimental results based on synthesized and real world ECG data verify the effectiveness of the proposed algorithm.

  • Time-to-Contact in Scattering Media

    Laksmita RAHADIANTI  Wooseong JEONG  Fumihiko SAKAUE  Jun SATO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/12/06
      Vol:
    E100-D No:3
      Page(s):
    564-573

    In this paper we propose a method for estimating time-to-contact in scattering media. Images taken in scattering media are often unclear and blurry, making it difficult to detect appropriate geometric information from these images for computing the 3 dimensional properties of the scene. Therefore, instead of searching for geometric information, we attempt to use photometric information instead. In our approach, we use the observed image intensity. The method proposed in this paper is able to utilize the effect of scattering media on the resultant image and estimate the time-to-contact toward objects without any prior knowledge of the scene, cameras, and the scattering media. This method is then evaluated using simulated and real images.

  • Mobile Sensor Relocation for Nonuniform and Dynamic Coverage Requirements

    Thamarak KHAMPEERPAT  Chaiporn JAIKAEO  

     
    PAPER-Information Network

      Pubricized:
    2016/12/05
      Vol:
    E100-D No:3
      Page(s):
    520-530

    Wireless sensor networks are being used in many disaster-related applications. Certain types of disasters are studied and modeled with different and dynamic risk estimations in different areas, hence requiring different levels of monitoring. Such nonuniform and dynamic coverage requirements pose a challenge to a sensor coverage problem. This work proposes the Mobile sensor Relocation using Delaunay triangulation And Shifting on Hill climbing (MR-DASH) approach, which calculates an appropriate location for each mobile sensor as an attempt to maximize coverage ratio. Based on a probabilistic sensing model, it constructs a Delaunay triangulation from static sensors' locations and vertices of interesting regions. The resulting triangles are then prioritized based on their sizes and corresponding levels of requirement so that mobile sensors can be relocated accordingly. The proposed method was both compared with an existing previous work and demonstrated with real-world disaster scenarios by simulation. The result showed that MR-DASH gives appropriate target locations that significantly improve the coverage ratio with relatively low total sensors' moving distance, while properly adapting to variations in coverage requirements.

  • Cache-Aware, In-Place Rotation Method for Texture-Based Volume Rendering

    Yuji MISAKI  Fumihiko INO  Kenichi HAGIHARA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/12/12
      Vol:
    E100-D No:3
      Page(s):
    452-461

    We propose a cache-aware method to accelerate texture-based volume rendering on a graphics processing unit (GPU) that is compatible with the compute unified device architecture. The proposed method extends a previous method such that it can maximize the average rendering performance while rotating the viewing direction around a volume. To realize this, the proposed method performs in-place rotation of volume data, which rearranges the order of voxels to allow consecutive threads (warps) to refer to voxels with the minimum access strides. Experiments indicate that the proposed method replaces the worst texture cache (TC) hit rate of 42% with the best TC hit rate of 93% for a 10243-voxel volume. Thus, the average frame rate increases by a factor of 1.6 in the proposed method compared with that in the previous method. Although the overhead of in-place rotation slightly decreases the frame rate from 2.0 frames per second (fps) to 1.9 fps, this slowdown occurs only with a few viewing directions.

  • Blind Image Deconvolution Using Specified 2-D HPF for Feature Extraction and Conjugate Gradient Method in Frequency Domain

    Takanori FUJISAWA  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E100-A No:3
      Page(s):
    846-853

    Image deconvolution is the task to recover the image information that was lost by taking photos with blur. Especially, to perform image deconvolution without prior information about blur kernel, is called blind image deconvolution. This framework is seriously ill-posed and an additional operation is required such as extracting image features. Many blind deconvolution frameworks separate the problem into kernel estimation problem and deconvolution problem. In order to solve the kernel estimation problem, previous frameworks extract the image's salient features by preprocessing, such as edge extraction. The disadvantage of these frameworks is that the quality of the estimated kernel is influenced by the region with no salient edges. Moreover, the optimization in the previous frameworks requires iterative calculation of convolution, which takes a heavy computational cost. In this paper, we present a blind image deconvolution framework using a specified high-pass filter (HPF) for feature extraction to estimate a blur kernel. The HPF-based feature extraction properly weights the image's regions for the optimization problem. Therefore, our kernel estimation problem can estimate the kernel in the region with no salient edges. In addition, our approach accelerates both kernel estimation and deconvolution processes by utilizing a conjugate gradient method in a frequency domain. This method eliminates costly convolution operations from these processes and reduces the execution time. Evaluation for 20 test images shows our framework not only improves the quality of recovered images but also performs faster than conventional frameworks.

  • A Fully-Synthesizable 10.06Gbps 16.1mW Injection-Locked CDR in 28nm FDSOI

    Aravind THARAYIL NARAYANAN  Wei DENG  Dongsheng YANG  Rui WU  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E100-C No:3
      Page(s):
    259-267

    An all-digital fully-synthesizable PVT-tolerant clock data recovery (CDR) architecture for wireline chip-to-chip interconnects is presented. The proposed architecture enables the co-synthesis of the CDR with the digital core. By eliminating the resource hungry manual layout and interfacing steps, which are necessary for conventional CDR topologies, the design process and the time-to-market can be drastically improved. Besides, the proposed CDR architecture enables the re-usability of majority of the sub-systems which enables easy migration to different process nodes. The proposed CDR is also equipped with a self-calibration scheme for ensuring tolerence over PVT. The proposed fully-syntehsizable CDR was implemented in 28nm FDSOI. The system achieves a maximum data rate of 10.06Gbps while consuming a power of 16.1mW from a 1V power supply.

  • Permutation Polynomials over Zpn and Their Randomness

    Yuyin YU  Lishan KE  Zhiqiang LIN  Qiuyan WANG  

     
    LETTER-Information Theory

      Vol:
    E100-A No:3
      Page(s):
    913-915

    Permutation polynomials over Zpn are useful in the design of cryptographic algorithms. In this paper, we obtain an equivalent condition for polynomial functions over Zpn to be permutations, and this equivalent condition can help us to analysis the randomness of such functions. Our results provide a method to distinguish permutation polynomials from random functions. We also introduce how to improve the randomness of permutation polynomials over Zpn.

  • Signal Reconstruction Algorithm of Finite Rate of Innovation with Matrix Pencil and Principal Component Analysis

    Yujie SHI  Li ZENG  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:3
      Page(s):
    761-768

    In this paper, we study the problem of noise with regard to the perfect reconstruction of non-bandlimited signals, the class of signals having a finite number of degrees of freedom per unit time. The finite rate of innovation (FRI) method provides a means of recovering a non-bandlimited signal through using of appropriate kernels. In the presence of noise, however, the reconstruction function of this scheme may become ill-conditioned. Further, the reduced sampling rates afforded by this scheme can be accompanied by increased error sensitivity. In this paper, to obtain improved noise robustness, we propose the matrix pencil (MP) method for sample signal reconstruction, which is based on principal component analysis (PCA). Through the selection of an adaptive eigenvalue, a non-bandlimited signal can be perfectly reconstructed via a stable solution of the Yule-Walker equation. The proposed method can obtain a high signal-to-noise-ratio (SNR) for the reconstruction results. Herein, the method is applied to certain non-bandlimited signals, such as a stream of Diracs and nonuniform splines. The simulation results demonstrate that the MP and PCA are more effective than the FRI method in suppressing noise. The FRI method can be used in many applications, including those related to bioimaging, radar, and ultrasound imaging.

  • Hybrid Minutiae Descriptor for Narrow Fingerprint Verification

    Zhiqiang HU  Dongju LI  Tsuyoshi ISSHIKI  Hiroaki KUNIEDA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/12/12
      Vol:
    E100-D No:3
      Page(s):
    546-555

    Narrow swipe sensor based systems have drawn more and more attention in recent years. However, the size of captured image is significantly smaller than that obtained from the traditional area fingerprint sensor. Under this condition the available minutiae number is also limited. Therefore, only employing minutiae with the standard associated feature can hardly achieve high verification accuracy. To solve this problem, we present a novel Hybrid Minutiae Descriptor (HMD) which consists of two modules. The first one: Minutiae Ridge-Valley Orientation Descriptor captures the orientation information around minutia and also the trace points located at associated ridge and valley. The second one: Gabor Binary Code extracts and codes the image patch around minutiae. The proposed HMD enhances the representation capability of minutiae feature, and can be matched very efficiently. Experiments conducted over public databases and the database captured by the narrow swipe sensor show that this innovative method gives rise to significant improvements in reducing FRR (False Reject Rate) and EER (Equal Error Rate).

  • Power-Rail ESD Clamp Circuit with Parasitic-BJT and Channel Parallel Shunt Paths to Achieve Enhanced Robustness

    Yuan WANG  Guangyi LU  Yize WANG  Xing ZHANG  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E100-C No:3
      Page(s):
    344-347

    This work reports a novel power-rail electrostatic discharge (ESD) clamp circuit with parasitic bipolar-junction-transistor (BJT) and channel parallel shunt paths. The parallel shunt paths are formed by delivering a tiny ratio of drain voltage to the gate terminal of the clamp device in ESD events. Under such a mechanism, the proposed circuit achieves enhanced robustness over those of both gate-grounded NMOS (ggNMOS) and the referenced gate-coupled NMOS (gcNMOS). Besides, the proposed circuit also achieves improved fast power-up immunity over that of the referenced gcNMOS. All investigated designs are fabricated in a 65-nm CMOS process. Transmission-line-pulsing (TLP) and human-body-model (HBM) test results have both confirmed the performance enhancements of the proposed circuit. Finally, the validity of the achieved performance enhancements on other trigger circuits is essentially revealed in this work.

  • Link Quality Information Sharing by Compressed Sensing and Compressed Transmission for Arbitrary Topology Wireless Mesh Networks

    Hiraku OKADA  Shuhei SUZAKI  Tatsuya KATO  Kentaro KOBAYASHI  Masaaki KATAYAMA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/09/20
      Vol:
    E100-B No:3
      Page(s):
    456-464

    We proposed to apply compressed sensing to realize information sharing of link quality for wireless mesh networks (WMNs) with grid topology. In this paper, we extend the link quality sharing method to be applied for WMNs with arbitrary topology. For arbitrary topology WMNs, we introduce a link quality matrix and a matrix formula for compressed sensing. By employing a diffusion wavelets basis, the link quality matrix is converted to its sparse equivalent. Based on the sparse matrix, information sharing is achieved by compressed sensing. In addition, we propose compressed transmission for arbitrary topology WMNs, in which only the compressed link quality information is transmitted. Experiments and simulations clarify that the proposed methods can reduce the amount of data transmitted for information sharing and maintain the quality of the shared information.

  • A Wideband Printed Elliptical Monopole Antenna for Circular Polarization

    Takafumi FUJIMOTO  Takaya ISHIKUBO  Masaya TAKAMURA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    203-210

    In this paper, a printed elliptical monopole antenna for wideband circular polarization is proposed. The antenna's structure is asymmetric with regard to the microstrip line. The section of the ground plane that overlaps the elliptical patch is removed. With simulations, the relationship between the antenna's geometrical parameters and the antenna's axial ratio of circularly polarized wave is clarified. The operational principle for wideband circular polarization is explained by the simulated electric current distributions. The simulated and measured bandwidths of the 3dB-axial ratio with a 2-VSWR is approximately 88.4% (2.12GHz-5.47GHz) and 83.6% (2.20GHz-5.36GHz), respectively.

  • Linear Quadratic Regulator with Decentralized Event-Triggering

    Kyohei NAKAJIMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    414-420

    Event-triggered control is a control method that the measured signal is sent to the controller only when a certain triggering condition on the measured signal is satisfied. In this paper, we propose a linear quadratic regulator (LQR) with decentralized triggering conditions. First, a suboptimal solution to the design problem of LQRs with decentralized triggering conditions is derived. A state-feedback gain can be obtained by solving a convex optimization problem with LMI (linear matrix inequality) constraints. Next, the relation between centralized and decentralized triggering conditions is discussed. It is shown that control performance of an LQR with decentralized event-triggering is better than that with centralized event-triggering. Finally, a numerical example is illustrated.

  • Quantum Optimal Multiple Assignment Scheme for Realizing General Access Structure of Secret Sharing

    Ryutaroh MATSUMOTO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E100-A No:2
      Page(s):
    726-728

    The multiple assignment scheme is to assign one or more shares to single participant so that any kind of access structure can be realized by classical secret sharing schemes. We propose its quantum version including ramp secret sharing schemes. Then we propose an integer optimization approach to minimize the average share size.

  • An Efficient Soft Shadow Mapping for Area Lights in Various Shapes and Colors

    Youngjae CHUN  Kyoungsu OH  

     
    LETTER-Computer Graphics

      Pubricized:
    2016/11/11
      Vol:
    E100-D No:2
      Page(s):
    396-400

    Shadow is an important effect that makes virtual 3D scenes more realistic. In this paper, we propose a fast and correct soft shadow generation method for area lights of various shapes and colors. To conduct efficient as well as accurate visibility tests, we exploit the complexity of shadow and area light color.

  • A Loitering Discovery System Using Efficient Similarity Search Based on Similarity Hierarchy

    Jianquan LIU  Shoji NISHIMURA  Takuya ARAKI  Yuichi NAKAMURA  

     
    INVITED PAPER

      Vol:
    E100-A No:2
      Page(s):
    367-375

    Similarity search is an important and fundamental problem, and thus widely used in various fields of computer science including multimedia, computer vision, database, information retrieval, etc. Recently, since loitering behavior often leads to abnormal situations, such as pickpocketing and terrorist attacks, its analysis attracts increasing attention from research communities. In this paper, we present AntiLoiter, a loitering discovery system adopting efficient similarity search on surveillance videos. As we know, most of existing systems for loitering analysis, mainly focus on how to detect or identify loiterers by behavior tracking techniques. However, the difficulties of tracking-based methods are known as that their analysis results are heavily influenced by occlusions, overlaps, and shadows. Moreover, tracking-based methods need to track the human appearance continuously. Therefore, existing methods are not readily applied to real-world surveillance cameras due to the appearance discontinuity of criminal loiterers. To solve this problem, we abandon the tracking method, instead, propose AntiLoiter to efficiently discover loiterers based on their frequent appearance patterns in longtime multiple surveillance videos. In AntiLoiter, we propose a novel data structure Luigi that indexes data using only similarity value returned by a corresponding function (e.g., face matching). Luigi is adopted to perform efficient similarity search to realize loitering discovery. We conducted extensive experiments on both synthetic and real surveillance videos to evaluate the efficiency and efficacy of our approach. The experimental results show that our system can find out loitering candidates correctly and outperforms existing method by 100 times in terms of runtime.

501-520hit(2923hit)