The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

341-360hit(2923hit)

  • Development of Acoustic Nonverbal Information Estimation System for Unconstrained Long-Term Monitoring of Daily Office Activity

    Hitomi YOKOYAMA  Masano NAKAYAMA  Hiroaki MURATA  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/11/12
      Vol:
    E102-D No:2
      Page(s):
    331-345

    Aimed at long-term monitoring of daily office conversations without recording the conversational content, a system is presented for estimating acoustic nonverbal information such as utterance duration, utterance frequency, and turn-taking. The system combines a sound localization technique based on the sound energy distribution with 16 beam-forming microphone-array modules mounted in the ceiling for reducing the influence of multiple sound reflection. Furthermore, human detection using a wide field of view camera is integrated to the system for more robust speaker estimation. The system estimates the speaker for each utterance and calculates nonverbal information based on it. An evaluation analyzing data collected over ten 12-hour workdays in an office with three assigned workers showed that the system had 72% speech segmentation detection accuracy and 86% speaker identification accuracy when utterances were correctly detected. Even with false voice detection and incorrect speaker identification and even in cases where the participants frequently made noise or where seven participants had gathered together for a discussion, the order of the amount of calculated acoustic nonverbal information uttered by the participants coincided with that based on human-coded acoustic nonverbal information. Continuous analysis of communication dynamics such as dominance and conversation participation roles through nonverbal information will reveal the dynamics of a group. The main contribution of this study is to demonstrate the feasibility of unconstrained long-term monitoring of daily office activity through acoustic nonverbal information.

  • Speaker-Phonetic I-Vector Modeling for Text-Dependent Speaker Verification with Random Digit Strings

    Shengyu YAO  Ruohua ZHOU  Pengyuan ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2018/11/19
      Vol:
    E102-D No:2
      Page(s):
    346-354

    This paper proposes a speaker-phonetic i-vector modeling method for text-dependent speaker verification with random digit strings, in which enrollment and test utterances are not of the same phrase. The core of the proposed method is making use of digit alignment information in i-vector framework. By utilizing force alignment information, verification scores of the testing trials can be computed in the fixed-phrase situation, in which the compared speech segments between the enrollment and test utterances are of the same phonetic content. Specifically, utterances are segmented into digits, then a unique phonetically-constrained i-vector extractor is applied to obtain speaker and channel variability representation for every digit segment. Probabilistic linear discriminant analysis (PLDA) and s-norm are subsequently used for channel compensation and score normalization respectively. The final score is obtained by combing the digit scores, which are computed by scoring individual digit segments of the test utterance against the corresponding ones of the enrollment. Experimental results on the Part 3 of Robust Speaker Recognition (RSR2015) database demonstrate that the proposed approach significantly outperforms GMM-UBM by 52.3% and 53.5% relative in equal error rate (EER) for male and female respectively.

  • Traffic Engineering and Traffic Monitoring in the Case of Incomplete Information

    Kodai SATAKE  Tatsuya OTOSHI  Yuichi OHSITA  Masayuki MURATA  

     
    PAPER-Network

      Pubricized:
    2018/07/23
      Vol:
    E102-B No:1
      Page(s):
    111-121

    Traffic engineering refers to techniques to accommodate traffic efficiently by dynamically configuring traffic routes so as to adjust to changes in traffic. If traffic changes frequently and drastically, the interval of route reconfiguration should be short. However, with shorter intervals, obtaining traffic information is problematic. To calculate a suitable route, accurate traffic information of the whole network must be gathered. This is difficult in short intervals, owing to the overhead incurred to monitor and collect traffic information. In this paper, we propose a framework for traffic engineering in cases where only partial traffic information can be obtained in each time slot. The proposed framework is inspired by the human brain, and uses conditional probability to make decisions. In this framework, a controller is deployed to (1) obtain a limited amount of traffic information, (2) estimate and predict the probability distribution of the traffic, (3) configure routes considering the probability distribution of future predicted traffic, and (4) select traffic that should be monitored during the next period considering the system performance yielded by route reconfiguration. We evaluate our framework with a simulation. The results demonstrate that our framework improves the efficiency of traffic accommodation even when only partial traffic information is monitored during each time slot.

  • Convergence Comparison on the IDR(s)-Based IPNMs for Electromagnetic Multiple Scattering Simulations

    Norimasa NAKASHIMA  Seiji FUJINO  

     
    BRIEF PAPER

      Vol:
    E102-C No:1
      Page(s):
    51-55

    This paper presents various Iterative Progressive Numerical Methods (IPNMs) for the computation of electromagnetic (EM) wave scattering from many objects. We previously modified the original IPNM from the standpoint of the classical and the IDR-based linear iterative solvers. We demonstrate the performance of the IDR(s)-based IPNMs through some numerical examples of EM wave scattering from regularly placed 27 perfectly electric conducting spheres.

  • Metal 3D-Printed T-Junction Ortho-Mode-Transducer with an Offset Stepped Post

    Hidenori YUKAWA  Yu USHIJIMA  Motomi ABE  Takeshi OSHIMA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:1
      Page(s):
    56-63

    We propose a T-junction OMT consisting of an offset stepped post. The offset stepped post contributes to the matching of two rectangular ports at the short circuit, situated at the opposite side walls. The structure without conventional ridges is simple and makes it possible to achieve robust performance. We fabricated a proposed T-junction OMT in a single piece of an aluminum alloy, using a commercial metal 3D-printer. The simple and compact structure with robust performance is proposed to overcome the disadvantages of a 3D-printer, such as fabrication tolerance and surface roughness. The measured results demonstrated a return loss of 22dB and an insertion loss of 0.3dB, with a bandwidth of 8% in the K-band.

  • How to Watermark Cryptographic Functions by Bilinear Maps

    Ryo NISHIMAKI  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    99-113

    We introduce a notion of watermarking for cryptographic functions and propose a concrete scheme for watermarking cryptographic functions. Informally speaking, a digital watermarking scheme for cryptographic functions embeds information, called a mark, into functions such as one-way functions and decryption functions of public-key encryption. There are two basic requirements for watermarking schemes. A mark-embedded function must be functionally equivalent to the original function. It must be difficult for adversaries to remove the embedded mark without damaging the original functionality. In spite of its importance and usefulness, there have only been a few theoretical works on watermarking for functions (or programs). Furthermore, we do not have rigorous definitions of watermarking for cryptographic functions and concrete constructions. To solve the problem above, we introduce a notion of watermarking for cryptographic functions and define its security. Furthermore, we present a lossy trapdoor function (LTF) based on the decisional bilinear Diffie-Hellman problem problem and a watermarking scheme for the LTF. Our watermarking scheme is secure under the symmetric external Diffie-Hellman assumption in the standard model. We use techniques of dual system encryption and dual pairing vector spaces (DPVS) to construct our watermarking scheme. This is a new application of DPVS.

  • Visual Emphasis of Lip Protrusion for Pronunciation Learning

    Siyang YU  Kazuaki KONDO  Yuichi NAKAMURA  Takayuki NAKAJIMA  Hiroaki NANJO  Masatake DANTSUJI  

     
    PAPER-Educational Technology

      Pubricized:
    2018/10/22
      Vol:
    E102-D No:1
      Page(s):
    156-164

    Pronunciation is a fundamental factor in speaking and listening. However, instructions for important articulation have not been sufficiently provided in conventional computer-assisted language learning (CALL) systems. One typical case is the articulation of rounded vowels. Although lip protrusion is essential for their correct pronunciation, the perception of lip protrusion is often difficult for beginners. To tackle this issue, we propose an innovative method that will provide a comprehensive visual explanation for articulation. Lip movements are three-dimensionally measured, and face images or videos are pseudocoloured on the basis of the movements. The coloured regions represent the lip protrusion of rounded vowels. To verify the learning effect of the proposed method, we conducted experiments with Japanese undergraduates in Chinese classes. The results showed that our method has advantages over conventional video materials.

  • Optimizing Online Permutation-Based AE Schemes for Lightweight Applications

    Yu SASAKI  Kan YASUDA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    35-47

    We explore ways to optimize online, permutation-based authenticated encryption (AE) schemes for lightweight applications. The lightweight applications demand that AE schemes operate in resource-constrained environments, which raise two issues: 1) implementation costs must be low, and 2) ensuring proper use of a nonce is difficult due to its small size and lack of randomness. Regarding the implementation costs, recently it has been recognized that permutation-based (rather than block-cipher-based) schemes frequently show advantages. However, regarding the security under nonce misuse, the standard permutation-based duplex construction cannot ensure confidentiality. There exists one permutation-based scheme named APE which offers certain robustness against nonce misuse. Unfortunately, the APE construction has several drawbacks such as ciphertext expansion and bidirectional permutation circuits. The ciphertext expansion would require more bandwidth, and the bidirectional circuits would require a larger hardware footprint. In this paper, we propose new constructions of online permutation-based AE that require less bandwidth, a smaller hardware footprint and lower computational costs. We provide security proofs for the new constructions, demonstrating that they are as secure as the APE construction.

  • Fast and Scalable Bilinear-Type Conversion Method for Large Scale Crypto Schemes Open Access

    Masayuki ABE  Fumitaka HOSHINO  Miyako OHKUBO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:1
      Page(s):
    251-269

    Bilinear-type conversion is to translate a cryptographic scheme designed over symmetric bilinear groups into one that works over asymmetric bilinear groups with small overhead regarding the size of objects concerned in the target scheme. In this paper, we address scalability for converting complex cryptographic schemes. Our contribution is threefold. Investigating complexity of bilinear-type conversion. We show that there exists no polynomial-time algorithm for worst-case inputs under standard complexity assumption. It means that bilinear-type conversion in general is an inherently difficult problem. Presenting a new scalable conversion method. Nevertheless, we show that large-scale conversion is indeed possible in practice when the target schemes are built from smaller building blocks with some structure. We present a novel conversion method, called IPConv, that uses 0-1 Integer Programming instantiated with a widely available IP solver. It instantly converts schemes containing more than a thousand of variables and hundreds of pairings. Application to computer-aided design. Our conversion method is also useful in modular design of middle to large scale cryptographic applications; first construct over simpler symmetric bilinear groups and run over efficient asymmetric groups. Thus one can avoid complication of manually allocating variables over asymmetric bilinear groups. We demonstrate its usefulness by somewhat counter-intuitive examples where converted DLIN-based Groth-Sahai proofs are more compact than manually built SXDH-based proofs. Though the early purpose of bilinear-type conversion is to save existing schemes from attacks against symmetric bilinear groups, our new scalable conversion method will find more applications beyond the original goal. Indeed, the above computer-aided design can be seen as a step toward automated modular design of cryptographic schemes.

  • Kirchhoff Approximation Analysis of Plane Wave Scattering by Conducting Thick Slits Open Access

    Khanh Nam NGUYEN  Hiroshi SHIRAI  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    12-20

    Kirchhoff approximation (KA) method has been applied for ray-mode conversion to analyze the plane wave scattering by conducting thick slits. The scattering fields can be considered as field radiations from equivalent magnetic current sources assumed by closing the aperture of the slit. The obtained results are compared with those of other methods to validate the accuracy of the proposed formulation in different conditions of slit dimension.

  • An ASIC Crypto Processor for 254-Bit Prime-Field Pairing Featuring Programmable Arithmetic Core Optimized for Quadratic Extension Field

    Hiromitsu AWANO  Tadayuki ICHIHASHI  Makoto IKEDA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    56-64

    An ASIC crypto processor optimized for the 254-bit prime-field optimal-ate pairing over Barreto-Naehrig (BN) curve is proposed. The data path of the proposed crypto processor is designed to compute five Fp2 operations, a multiplication, three addition/subtractions, and an inversion, simultaneously. We further propose a design methodology to automate the instruction scheduling by using a combinatorial optimization solver, with which the total cycle count is reduced to 1/2 compared with ever reported. The proposed crypto processor is designed and fabricated by using a 65nm silicon-on-thin-box (SOTB) CMOS process. The chip measurement result shows that the fabricated chip successfully computes a pairing in 0.185ms when a typical operating voltage of 1.20V is applied, which corresponds to 2.8× speed up compared to the current state-of-the-art pairing implementation on ASIC platform.

  • Asymptotic Stabilization of Nonholonomic Four-Wheeled Vehicle with Steering Limitation

    Wataru HASHIMOTO  Yuh YAMASHITA  Koichi KOBAYASHI  

     
    PAPER-Systems and Control

      Vol:
    E102-A No:1
      Page(s):
    227-234

    In this paper, we propose a new asymptotically stabilizing control law for a four-wheeled vehicle with a steering limitation. We adopt a locally semiconcave control Lyapunov function (LS-CLF) for the system. To overcome the nonconvexity of the input-constraint set, we utilize a saturation function and a signum function in the control law. The signum function makes the vehicle velocity nonzero except at the origin so that the angular velocity can be manipulated within the input constraint. However, the signum function may cause a chattering phenomenon at certain points of the state far from the origin. Thus, we integrate a lazy-switching mechanism for the vehicle velocity into the control law. The mechanism makes a sign of the vehicle velocity maintain, and the new control input also decreases the value of the LS-CLF. We confirm the effectiveness of our method by a computer simulation and experiments.

  • Multi-Phase Synchronization Phenomena in a Ring-Coupled System of Digital Spiking Neurons

    Hiroaki UCHIDA  Toshimichi SAITO  

     
    PAPER-Nonlinear Problems

      Vol:
    E102-A No:1
      Page(s):
    235-241

    This paper studies synchronization phenomena in a ring-coupled system of digital spiking neurons. The neuron consists of two shift registers connected by a wiring circuit and can generate various spike-trains. Applying a spike based connection, the ring-coupled system is constructed. The ring-coupled system can generate multi-phase synchronization phenomena of various periodic spike-trains. Using a simple dynamic model, existence and stability of the synchronization phenomena are analyzed. Presenting a FPGA based test circuit, typical synchronization phenomena are confirmed experimentally.

  • High Frequency Electromagnetic Scattering Analysis by Rectangular Cylinders - TM Polarization -

    Hieu Ngoc QUANG  Hiroshi SHIRAI  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    21-29

    In this study, transverse magnetic electromagnetic plane wave scatterings by rectangular cylinders have been analyzed by a high frequency asymptotic method. Scattering field can be generated by the equivalent electric and magnetic currents which are obtained approximately from the geometrical optics (GO) fields. Our formulation is found to be exactly the same with the physical optics (PO) for the conducting cylinders, and it can also be applicable for dielectric cylinders. Numerical calculations are made to compare the results with those by other methods, such as the geometrical theory of diffraction (GTD) and HFSS simulation. A good agreement has been observed to confirm the validity of our method.

  • Towards Privacy-Preserving Location Sharing over Mobile Online Social Networks Open Access

    Juan CHEN  Shen SU  Xianzhi WANG  

     
    PAPER-Information Network

      Pubricized:
    2018/10/18
      Vol:
    E102-D No:1
      Page(s):
    133-146

    Location sharing services have recently gained momentum over mobile online social networks (mOSNs), seeing the increasing popularity of GPS-capable mobile devices such as smart phones. Despite the convenience brought by location sharing, there comes severe privacy risks. Though many efforts have been made to protect user privacy during location sharing, many of them rely on the extensive deployment of trusted Cellular Towers (CTs) and some incur excessive time overhead. More importantly, little research so far can support complete privacy including location privacy, identity privacy and social relation privacy. We propose SAM, a new System Architecture for mOSNs, and P3S, a Privacy-Preserving Protocol based on SAM, to address the above issues for privacy-preserving location sharing over mOSNs. SAM and P3S differ from previous work in providing complete privacy for location sharing services over mOSNs. Theoretical analysis and extensive experimental results demonstrate the feasibility and efficiency of the proposed system and protocol.

  • Multi Long-Short Term Memory Models for Short Term Traffic Flow Prediction

    Zelong XUE  Yang XUE  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    3272-3275

    Many single model methods have been applied to real-time short-term traffic flow prediction. However, since traffic flow data is mixed with a variety of ingredients, the performance of single model is limited. Therefore, we proposed Multi-Long-Short Term Memory Models, which improved traffic flow prediction accuracy comparing with state-of-the-art models.

  • Discovering Co-Cluster Structure from Relationships between Biased Objects

    Iku OHAMA  Takuya KIDA  Hiroki ARIMURA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/09/14
      Vol:
    E101-D No:12
      Page(s):
    3108-3122

    Latent variable models for relational data enable us to extract the co-cluster structure underlying observed relational data. The Infinite Relational Model (IRM) is a well-known relational model for discovering co-cluster structures with an unknown number of clusters. The IRM and several related models commonly assume that the link probability between two objects depends only on their cluster assignment. However, relational models based on this assumption often lead us to extract many non-informative and unexpected clusters. This is because the cluster structures underlying real-world relationships are often blurred by biases of individual objects. To overcome this problem, we propose a multi-layered framework, which extracts a clear de-blurred co-cluster structure in the presence of object biases. Then, we propose the Multi-Layered Infinite Relational Model (MLIRM) which is a special instance of the proposed framework incorporating the IRM as a co-clustering model. Furthermore, we reveal that some relational models can be regarded as special cases of the MLIRM. We derive an efficient collapsed Gibbs sampler to perform posterior inference for the MLIRM. Experiments conducted using real-world datasets have confirmed that the proposed model successfully extracts clear and interpretable cluster structures from real-world relational data.

  • A Robust Depth Image Based Rendering Scheme for Stereoscopic View Synthesis with Adaptive Domain Transform Based Filtering Framework

    Wei LIU  Yun Qi TANG  Jian Wei DING  Ming Yue CUI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3138-3149

    Depth image based rendering (DIBR), which is utilized to render virtual views with a color image and the corresponding depth map, is one of the key procedures in the 2D to 3D conversion process. However, some troubling problems, such as depth edge misalignment, disocclusion occurrences and cracks at resampling, still exist in current DIBR systems. To solve these problems, in this paper, we present a robust depth image based rendering scheme for stereoscopic view synthesis. The cores of the proposed scheme are two depth map filters which share a common domain transform based filtering framework. As a first step, a filter of this framework is carried out to realize texture-depth boundary alignments and directional disocclusion reduction smoothing simultaneously. Then after depth map 3D warping, another adaptive filter is used on the warped depth maps with delivered scene gradient structures to further diminish the remaining cracks and noises. Finally, with the optimized depth map of the virtual view, backward texture warping is adopted to retrieve the final texture virtual view. The proposed scheme enables to yield visually satisfactory results for high quality 2D to 3D conversion. Experimental results demonstrate the excellent performances of the proposed approach.

  • Automatic Prevention of Buffer Overflow Vulnerability Using Candidate Code Generation

    Young-Su JANG  Jin-Young CHOI  

     
    PAPER-Software System

      Pubricized:
    2018/08/24
      Vol:
    E101-D No:12
      Page(s):
    3005-3018

    The security of a software program critically depends on the prevention of vulnerabilities in the source code; however, conventional computer programs lack the ability to identify vulnerable code in another program. Our research was aimed at developing a technique capable of generating substitution code for the detection of buffer overflow vulnerability in C/C++ programs. The technique automatically verifies and sanitizes code instrumentation by comparing the result of each candidate variable with that expected from the input data. Our results showed that statements containing buffer overflow vulnerabilities could be detected and prevented by using a substitution variable and by sanitizing code vulnerabilities based on the size of the variables. Thus, faults can be detected prior to execution of the statement, preventing malicious access. Our approach is particularly useful for enhancing software security monitoring, and for designing retrofitting techniques in applications.

  • Patch Optimization for Surface Light Field Reconstruction

    Wei LI  Huajun GONG  Chunlin SHEN  Yi WU  

     
    LETTER-Computer Graphics

      Pubricized:
    2018/09/26
      Vol:
    E101-D No:12
      Page(s):
    3267-3271

    Surface light field advances conventional light field rendering techniques by utilizing geometry information. Using surface light field, real-world objects with complex appearance could be faithfully represented. This capability could play an important role in many VR/AR applications. However, an accurate geometric model is needed for surface light field sampling and processing, which limits its wide usage since many objects of interests are difficult to reconstruct with their usually very complex appearances. We propose a novel two-step optimization framework to reduce the dependency of accurate geometry. The key insight is to treat surface light field sampling as a multi-view multi-texture optimization problem. Our approach can deal with both model inaccuracy and image to model misalignment, making it possible to create high-fidelity surface light field models without using high-precision special hardware.

341-360hit(2923hit)