The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

9521-9540hit(16314hit)

  • A Novel Multi-Service Simultaneous Reception by Sharing Diversity Branches

    Noriyoshi SUZUKI  Kenji ITO  Tsutayuki SHIBATA  Nobuo ITOH  

     
    PAPER

      Vol:
    E88-B No:11
      Page(s):
    4212-4219

    In this paper, we propose a new concept of receiver structure with diversity reception technique to realize multi-service simultaneous reception, which shares diversity branches between receiving communication services. In the proposed receiver structure, each diversity branch selects the receiving services dynamically according to channel states, and each communication service is always selected by at least one branch to realize multi-service simultaneous reception. A basic algorithm is also described to select combinations of a diversity branch and a receiving communication service. The total number of branches decreases and the effective number of branches per communication service increases, by sharing the branches between communication services in the proposed receiver. Simulation results are shown that the proposed diversity receiver achieves both complexity reduction and performance improvement.

  • Continuous Wave Time-Division-Multiplexing and Its Applications

    Ke-chu YI  Chun-yan GU  Chun-ting WANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E88-B No:11
      Page(s):
    4266-4273

    Time-Division-Multiplexing (TDM) is usually aimed at digital signals, while Continuous Wave Time-Division- Multiplexing (i.e. CWTDM) presented in this paper mainly addresses the problem of multiple continuous signals to share a channel. According to the idea in Ref.[1], this paper proposes a novel method for implementing CWTDM, which can make multiple band-limited continuous signals time-division-multiplexed into one continuous signal without significantly expanding the frequency band. The new method has several important applications. In particular, it can be used to implement an on-board FDMA-CWTDM conversion to develop a new system of satellite communications with more efficient performance.

  • An LCD Backlight-Module Driver Using a New Multi-Lamp Current Sharing Technique

    Chang-Hua LIN  John Yanhao CHEN  Fuhliang WEN  

     
    PAPER

      Vol:
    E88-C No:11
      Page(s):
    2111-2117

    This paper proposes a backlight module which drives multiple cold-cathode fluorescent lamps (CCFLs) with a current mirror technique to equalize the driving current for each lamp. We first adopt a half-bridge parallel-resonant inverter as the main circuit and use a single-input, multiple-output transformer to drive the multi-CCFLs. Next, we introduce current-mirror circuits to create a new current-sharing circuit, in which its current reference node and the parallel-connected multi-load nodes are used to accurately equalize all CCFLs' driving current. This will balance each lamp's brightness and, consequently, improve the picture display quality of the related liquid crystal display (LCD). This paper details the design concept for each component value with the assistance of an actual design example. The results of the example are examined with its actual measurements, which consequently verify the correctness of the proposed control strategy.

  • Classification of Driving Methods for TFT-OLEDs and Novel Proposal Using Time Ratio Grayscale and Current Uniformization

    Mutsumi KIMURA  Yuji HARA  Hiroyuki HARA  Tomoyuki OKUYAMA  Satoshi INOUE  Tatsuya SHIMODA  

     
    REVIEW PAPER

      Vol:
    E88-C No:11
      Page(s):
    2043-2050

    Driving methods for TFT-OLEDs are explained with their features and classified from the viewpoints of grayscale methods and uniformizing methods. This classification leads us to a novel proposal using time ratio grayscale and current uniformization. This driving method maintains current uniformity and simultaneously overcomes charging shortage of the pixel circuit for low grayscale levels and current variation due to the shift of operating points. Tolerance toward degraded characteristics, linearity of grayscale and luminance uniformity against degraded characteristics are confirmed using circuit simulation.

  • Investigation on EM Wave Absorbers by Using Resistive Film with Capacitive Reactance

    Hiroshi KURIHARA  Toshifumi SAITO  Koji TAKIZAWA  Osamu HASHIMOTO  

     
    PAPER-Electronic Materials

      Vol:
    E88-C No:11
      Page(s):
    2156-2162

    It is known that the thickness of the λ/4 type EM wave absorber having a resistive film with the capacitive reactance is thinner than 1/4 wavelength. This paper investigates EM wave absorbers using the resistive film with capacitive reactance. We introduced the impedance into the resistive film, and then clarified the relationship between the impedance and the matching thickness in the single layer EM wave absorber. Practically, we carried out to grasp the impedance of the resistive films, which were prepared using the conductive flake powder. As the results, we have proven that the matching thickness in the single layer EM wave absorber could be realized 0.17 λ-0.09 λ in the frequency range from 2 GHz to 8 GHz by using these resistive films. We also fabricated the single resistive layer and the double resistive layers EM wave absorber using these resistive films for Dedicated Short Range Communications (DSRC) and wireless Local Area Network (LAN), in which the matching thickness could be reduced to 45% and 30%, respectively, as compared with the each absorber using the non-capacitive reactance.

  • A Simplified Ordering Scheme Minimizing Average BER for MIMO Systems with Adaptive Modulation

    Kyeongyeon KIM  Seijoon SHIM  Chungyong LEE  Young Yong KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:11
      Page(s):
    4390-4393

    This paper proposes a new detection ordering scheme, which minimizes average error rate of the MIMO system with per antenna rate control. This paper shows an optimal scheme minimizing average error rate expressed by the Q function, and simplifies the optimal scheme by using the minimum equivalent SINR scaled by modulation indices, based on approximated error rate. In spite of reduced complexity, the simplified scheme demonstrates the almost same performance as the optimal scheme. Owing to the diversity of detection ordering, the proposed scheme has over 2 dB higher SNR gain at the BER of 10-3 than the existing ordering schemes in balanced array size systems.

  • Power-Aware Scalable Pipelined Booth Multiplier

    Hanho LEE  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E88-A No:11
      Page(s):
    3230-3234

    An energy-efficient power-aware design is highly desirable for DSP functions that encounter a wide diversity of operating scenarios in battery-powered wireless sensor network systems. Addressing this issue, this letter presents a low-power power-aware scalable pipelined Booth multiplier that makes use of dynamic-range detection unit, sharing common functional units, ensemble of optimized Wallace-trees and a 4-bit array-based adder-tree for DSP applications.

  • A Nonlinear Principal Component Analysis of Image Data

    Ryo SAEGUSA  Hitoshi SAKANO  Shuji HASHIMOTO  

     
    PAPER

      Vol:
    E88-D No:10
      Page(s):
    2242-2248

    Principal Component Analysis (PCA) has been applied in various areas such as pattern recognition and data compression. In some cases, however, PCA does not extract the characteristics of the data-distribution efficiently. In order to overcome this problem, we have proposed a novel method of Nonlinear PCA which preserves the order of the principal components. In this paper, we reduce the dimensionality of image data using the proposed method, and examine its effectiveness in the compression and recognition of images.

  • An Efficient Search Method Based on Dynamic Attention Map by Ising Model

    Kazuhiro HOTTA  Masaru TANAKA  Takio KURITA  Taketoshi MISHIMA  

     
    PAPER

      Vol:
    E88-D No:10
      Page(s):
    2286-2295

    This paper presents Dynamic Attention Map by Ising model for face detection. In general, a face detector can not know where faces there are and how many faces there are in advance. Therefore, the face detector must search the whole regions on the image and requires much computational time. To speed up the search, the information obtained at previous search points should be used effectively. In order to use the likelihood of face obtained at previous search points effectively, Ising model is adopted to face detection. Ising model has the two-state spins; "up" and "down". The state of a spin is updated by depending on the neighboring spins and an external magnetic field. Ising spins are assigned to "face" and "non-face" states of face detection. In addition, the measured likelihood of face is integrated into the energy function of Ising model as the external magnetic field. It is confirmed that face candidates would be reduced effectively by spin flip dynamics. To improve the search performance further, the single level Ising search method is extended to the multilevel Ising search. The interactions between two layers which are characterized by the renormalization group method is used to reduce the face candidates. The effectiveness of the multilevel Ising search method is also confirmed by the comparison with the single level Ising search method.

  • On Multiple Smoothed Transmission of MPEG Video Streams

    Dongzhao SUN  Mikihiko NISHIARA  Hiroyoshi MORITA  

     
    PAPER-Image Coding

      Vol:
    E88-A No:10
      Page(s):
    2844-2851

    A rate splitting algorithm is presented for a multiple video transmission system to transfer the aggregation (or statical multiplexing) of multiple video streams to multiple clients so that each client can receive the requested video stream with the reliable fidelity. Computer simulations for transmission of a set of 128 MPEG compressed video streams show that the proposed algorithm alleviates the variability of the aggregate video transmission comparing with a scheme to smooth individually each of videos using the traditional online smoothing algorithm. Besides, the proposed is 2 time faster than the traditional one.

  • A Feedback Type Adaptive Array Antenna with One Bit Feedback Information and Adaptive Update Size in FDD System

    Mona SHOKAIR  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4074-4080

    The purpose of this paper is to improve a feedback-type adaptive array antenna (AAA) with feedback information quantized by one bit which was presented recently on TDMA system by an author of this paper. The improvement is made by using adaptive, instead of constant, update size of adaptive antenna weights control. Computer simulation results show that the performance of this system is improved to be almost equivalent to the performance of a system without quantization of the feedback information for wide range of fading speed. The results include the effect of control delay time and the maximum Doppler frequency under flat fading and frequency-selective fading.

  • An Efficient Homotopy Method for Finding DC Operating Points of Nonlinear Circuits

    Yu IMAI  Kiyotaka YAMAMURA  Yasuaki INOUE  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2554-2561

    Finding DC operating points of nonlinear circuits is an important problem in circuit simulation. The Newton-Raphson method employed in SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. There are several types of homotopy methods, one of which succeeded in solving bipolar analog circuits with more than 20000 elements with the theoretical guarantee of global convergence. In this paper, we propose an improved version of the homotopy method that can find DC operating points of practical nonlinear circuits smoothly and efficiently. Numerical examples show the effectiveness of the proposed method.

  • A New Efficient Impulse Detection Algorithm for the Removal of Impulse Noise

    Wenbin LUO  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2579-2586

    A new impulse noise detection algorithm is presented, which can successfully remove impulse noise from corrupted images while preserving image details. The impulse detection algorithm is combined with median filtering to achieve noise removal. The main advantage of the proposed algorithm is that it can detect the impulse noise with high accuracy while reducing the probability of detecting image details as impulses. Also, it can be applied iteratively to improve the quality of restored images. It is efficient and low in complexity. Furthermore, it requires no previous training. Extensive experimental results show that the proposed approach significantly outperforms many well-known techniques.

  • A Heuristic Search Method with the Reduced List of Test Error Patterns for Maximum Likelihood Decoding

    Hideki YAGI  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E88-A No:10
      Page(s):
    2721-2733

    The reliability-based heuristic search methods for maximum likelihood decoding (MLD) generate test error patterns (or, equivalently, candidate codewords) according to their heuristic values. Test error patterns are stored in lists and its space complexity is crucially large for MLD of long block codes. Based on the decoding algorithms both of Battail and Fang and of its generalized version suggested by Valembois and Fossorier, we propose a new method for reducing the space complexity of the heuristic search methods for MLD including the well-known decoding algorithm of Han et al. If the heuristic function satisfies a certain condition, the proposed method guarantees to reduce the space complexity of both the Battail-Fang and Han et al. decoding algorithms. Simulation results show the high efficiency of the proposed method.

  • A Computational Model for Taxonomy-Based Word Learning Inspired by Infant Developmental Word Acquisition

    Akira TOYOMURA  Takashi OMORI  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E88-D No:10
      Page(s):
    2389-2398

    To develop human interfaces such as home information equipment, highly capable word learning ability is required. In particular, in order to realize user-customized and situation-dependent interaction using language, a function is needed that can build new categories online in response to presented objects for an advanced human interface. However, at present, there are few basic studies focusing on the purpose of language acquisition with category formation. In this study, taking hints from an analogy between machine learning and infant developmental word acquisition, we propose a taxonomy-based word-learning model using a neural network. Through computer simulations, we show that our model can build categories and find the name of an object based on categorization.

  • An SDMA Approach with Preamble Subcarrier Assignment for IEEE802.11a-Based OFDM Signals

    Yunjian JIA  Shinsuke HARA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4133-4137

    In this letter, we present a space division multiple access (SDMA) approach for IEEE802.11a-based system employing pre-fast Fourier transform (FFT) adaptive array antenna (AAA) at base station (BS). As the core idea, we propose a preamble subcarrier assignment method to generate different preambles for different users using the same signal burst structure defined by IEEE802.11a, by which BS can effectively distinguish each user from other users and accurately estimate the channel impulse response (CIR) for each user. In this way, SDMA can be easily realized with no significant change in IEEE802.11a-based system. The performance of the proposed SDMA system is evaluated by computer simulation using a realistic spatio-temporal indoor wireless channel model.

  • Demonstration of 10 Gbit/s-Based Time-Spreading and Wavelength-Hopping Optical-Code-Division-Multiplexing Using Fiber-Bragg-Grating En/Decoder

    Naoki MINATO  Hideaki TAMAI  Hideyuki IWAMURA  Satoko KUTSUZAWA  Shuko KOBAYASHI  Kensuke SASAKI  Akihiko NISHIKI  

     
    PAPER

      Vol:
    E88-B No:10
      Page(s):
    3848-3854

    We studied 10 Gbit/s-based time-spreading and wave-length-hopping (TS-WH) optical code division multiplexing (OCDM) using fiber Bragg gratings (FBGs). To apply it to such the high bit rate system more than ten gigabit, two techniques are adopted. One is encoding with the maximum spreading time of 400 ps, which is four times as data bit duration, to encode without shortening chip duration. Another is encoder design. The apodized refractive index profile to the unit-gratings composing the encoder is designed to encode the pulses with 10-20 ps width at 10 Gbit/s rate. Using these techniques, 210 Gbit/s OCDM is demonstrated successfully. In this scheme, transmission distance is limited due to dispersion effect because the signal has wide bandwidth to assign a wavelength-hopping pattern. We use no additional devices to compensate the dispersion, in order to construct simple and cost-effective system. Novel FBG encoder is designed to incorporate both encoding and compensating of group delay among chip pulses within one device. We confirm the extension of transmission distance in the TS-WH OCDM from the demonstration over 40 km-long single mode fiber.

  • Real Time Search for Similar Hand Images from Database for Robotic Hand Control

    Kiyoshi HOSHINO  Takanobu TANIMOTO  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2514-2520

    The authors propose a system for searching the shape of human hands and fingers in real time and with high accuracy, without using any special peripheral equipment such as range sensor, PC cluster, etc., by a method of retrieving similar image quickly with high accuracy from a large volume of image database containing the complicated shapes and self-occlusions. In designing the system, we constructed a database in a way to be adaptable even to differences among individuals, and searched CG images of hand similar to unknown hand image, through extraction of characteristics using high-order local autocorrelational patterns, reduction of the amount of characteristics centering on principal component analysis, and prior rearrangement of data corresponding to the amount of characteristics. As a result of experiments, our system performed high-accuracy estimation of human hand shape where mean error was 7 degrees in finger joint angles, with the processing speed of 30 fps or over.

  • Millimeter-Wave Broadband Mixers in New Testing and Measurement Instruments for High Data Rate Signal Analyses

    Masayuki KIMISHIMA  

     
    PAPER

      Vol:
    E88-C No:10
      Page(s):
    1973-1980

    The millimeter-wave (MMW) broadband mixers that are useful for measurement instruments to analyze MMW high data rate signals have been investigated. At first, we propose the specialized RF front-end for analyses of MMW high data rate signals. Next, the required specifications for the 1st mixers of the front-end are estimated, and the design, fabrication, and testing results of Q, V, and W-band monolithic broadband resistive mixers are described. The testing results are compared with performances of the diode mixer designed for V-band. It was found that the resistive mixers have very attractive performances of low conversion loss, good frequency flatness and high third order intercept point (IP3) with low Local (LO) oscillators power. The developed resistive mixers are suitable for the proposed MMW band measurement instruments.

  • Image Segmentation with Fast Wavelet-Based Color Segmenting and Directional Region Growing

    Din-Yuen CHAN  Chih-Hsueh LIN  Wen-Shyong HSIEH  

     
    PAPER

      Vol:
    E88-D No:10
      Page(s):
    2249-2259

    This investigation proposes a fast wavelet-based color segmentation (FWCS) technique and a modified directional region-growing (DRG) technique for semantic image segmentation. The FWCS is a subsequent combination of progressive color truncation and histogram-based color extraction processes for segmenting color regions in images. By exploring specialized centroids of segmented fragments as initial growing seeds, the proposed DRG operates a directional 1-D region growing on pairs of color segmented regions based on those centroids. When the two examined regions are positively confirmed by DRG, the proposed framework subsequently computes the texture features extracted from these two regions to further check their relation using texture similarity testing (TST). If any pair of regions passes double checking with both DRG and TST, they are identified as associated regions. If two associated regions/areas are connective, they are unified to a union area enclosed by a single contour. On the contrary, the proposed framework merely acknowledges a linking relation between those associated regions/areas highlighted with any linking mark. Particularly, by the systematic integration of all proposed processes, the critical issue to decide the ending level of wavelet decomposition in various images can be efficiently solved in FWCS by a quasi-linear high-frequency analysis model newly proposed. The simulations conducted here demonstrate that the proposed segmentation framework can achieve a quasi-semantic segmentation without priori a high-level knowledge.

9521-9540hit(16314hit)