The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

21321-21340hit(30728hit)

  • A Novel Technique for Optical Generation of Millimeter-Wave Signals Using Multiple Phase-Locked Lasers

    Masaharu HYODO  Masayoshi WATANABE  

     
    PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1236-1244

    A new technique for optical generation of high-purity millimeter-wave (mm-wave) signals--namely, by synthesizing the outputs from cascadingly phase-locked multiple semiconductor lasers--was developed. Firstly, a high-spectral-purity mm-wave signal was optically generated by heterodyning the outputs from two phase-locked external-cavity semiconductor lasers. The beat signal was detected by a p-i-n photodiode whose output was directly coupled to a coax-waveguide converter followed by a W-band harmonic mixer. By constructing an optical phase-locked loop (OPLL), a high-spectral-purity mm-wave signal with an electrical power of 2.3 µW was successfully generated at 110 GHz with an rms phase fluctuation of 57 mrad. Secondly, the frequency of the mm-wave signal was extended by use of three cascadingly phase-locked semiconductor lasers. This technique uses a semiconductor optical amplifier (SOA) to generate four-wave-mixing (FWM) signals as well as to amplify the input signals. When the three lasers were appropriately tuned, two pairs of FWM signals were nearly degenerated. By phase-locking the offset frequency in one of the nearly degenerated pairs, the frequency separations among the three lasers were kept at a ratio of 1:2. Thus, we successfully generated high-purity millimeter-wave optical-beat signals at frequencies at 330.566 GHz with an rms phase fluctuation of 0.38 rad. A detailed analysis of the phase fluctuations was carried out on the basis of measured power spectral densities. The possibility of extending the mm-wave frequency up to 1 THz by using four cascadingly phase-locked lasers was also discussed.

  • Machine Learning via Multiresolution Approximation

    Ilya BLAYVAS  Ron KIMMEL  

     
    INVITED PAPER

      Vol:
    E86-D No:7
      Page(s):
    1172-1180

    We consider the classification problem as a problem of approximation of a given training set. This approximation is constructed in a multiresolution framework, and organized in a tree-structure. It allows efficient training and query, both in constant time per training point. The proposed method is efficient for low-dimensional classification and regression estimation problems with large data sets.

  • Full-Duplex Transmission Using 2-RF-Port Electroabsorption Transceiver with Photonic Up- and Downconversions for Millimeter-Wave Radio-on-Fiber System

    Kensuke IKEDA  Toshiaki KURI  Yoshiro TAKAHASHI  Ken-ichi KITAYAMA  

     
    PAPER-Photonic Links for Wireless Communications

      Vol:
    E86-C No:7
      Page(s):
    1138-1145

    Full-duplex transmission of 60.0 GHz and 59.6 GHz millimeter-wave (mm-wave) signals of 155.52-Mbit/s differential phase shift keying (DPSK) data, radio-on-fiber (ROF) signals over 25-km-long standard single-mode fibers (SMFs) is experimentally demonstrated for the first time using a single 2-RF-port electroabsorption transceiver (EAT). The simplification of base stations (BSs) is strongly required to realize cost-effective and high-reliability mm-wave wireless access. This single EAT detects a C-band ROF signal modulated by a mm-wave downlink signal and simultaneously modulates the L-band optical carrier by a mm-wave uplink signal. The BS mainly consists of the EAT, leading to a simple and low-cost BS. Optical pilot tones and optical bandpass filters are used for photonic downconversion and photonic upconversion, to convert frequencies between mm-wave signals and intermediate frequency (IF) signals in the optical domain. With the use of optical conversions, these signals have no significant fading problems. The simultaneous transmission of both up- and downlinks has been achieved with the BER of less than 10-9. Also the fading problems due to the fiber dispersion of photonic conversions are analyzed mathematically in this paper. The single-EAT BS will become a promising candidate for a ROF access system.

  • Compound-Error-Correcting Codes and Their Augmentation

    Masaya FUJISAWA  Shusuke MAEDA  Shojiro SAKATA  

     
    PAPER-Coding Theory

      Vol:
    E86-A No:7
      Page(s):
    1813-1819

    A compound error is any combination of burst errors with various burst lengths including random errors. The compound weight of any such error is defined as a kind of combinational metric which is a generalization of Gabidulin's metric. First, we present a fast method for calculating the weight of any word. Based on this method, as an extension of Wadayama's augmenting method in the case of Hamming weight, we propose a method of constructing codes having higher coding rate by augmenting any compound-error-correcting codes. Furthermore, we show some examples of good compound-error-correcting codes obtained by using our augmenting method.

  • Capacity Analysis and the Merging of a WDM Ring Fiber-Radio Backbone Incorporating Wavelength Interleaving with a Sectorized Antenna Interface

    Christina LIM  Ampalavanapillai NIRMALATHAS  Dalma NOVAK  Rodney WATERHOUSE  

     
    PAPER-Photonics for Antenna Systems

      Vol:
    E86-C No:7
      Page(s):
    1184-1190

    We investigate the capacity limitations of a WDM ring fiber-radio backbone incorporating wavelength interleaving where each base station drives a sectorized antenna interface. We also investigate the issues related to the merging of such networks with standard WDM infrastructures. The investigations show that re-allocating the interleaved WDM channels to fit within a 100 GHz block enables the millimeter-wave (mm-wave) fiber-radio system with sectorized antenna interfaces to integrate easily with WDM systems. The performance of a variety of channel allocations for the merged fiber-radio network is examined and simulation studies of the transmission of multiple channels are carried out. The overall network capacity of the merged mm-wave fiber-radio network is improved with the proposed channel allocation schemes.

  • Fiber-Optic Sectorized Remote Antenna Systems for Millimeter-Wave Broadband Wireless Access Networks

    Hiroaki YAMAMOTO  Kuniaki UTSUMI  Michifumi MIYASHITA  Masahiro KURONO  Yoshizumi SERIZAWA  Yozo SHOJI  Hiroyo OGAWA  

     
    PAPER-Photonics for Antenna Systems

      Vol:
    E86-C No:7
      Page(s):
    1191-1196

    The fiber-optic sectorized remote antenna system by using the radio frequency (RF) optical transmission technique was promising for increasing the number of subscribers in the millimeter-wave broadband wireless access (MMW BWA) networks. To realize the cost-effectiveness of the fiber-optic sectorized remote antenna system covering four areas, we reached the conclusion that the best multiplexing schemes were the sub-carrier division multiplexing (SCM) of the intermediate frequency (IF) signals of 2 GHz for the down link, the coarse wavelength division multiplexing (CWDM) with the IF signals optical transmission for the up link and 1.3/1.55 µm-WDM for multiplexing the down link and the up link. In addition, the target specifications of this SCM-CWDM system were described, and the designs of the carrier to noise ratio (CNR) and the third order intermodulation distortion (IM3) were examined.

  • Uplink Link Capacity of DS-CDMA Packet Mobile Communications with Rake Combining and Transmit Power Control

    ZhiSen WANG  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:7
      Page(s):
    2203-2206

    Without transmit power control (TPC) and Rake combining, the uplink capacity of a direct sequence code division multiple access (DS-CDMA) packet mobile communication system significantly degrades due to the near-far problem and multipath fading. In this letter, assuming a single cell system with an interference-limited channel, the impact of the joint use of Rake combining and TPC on the uplink capacity is evaluated by computer simulation. Slow TPC is found to give a link capacity larger than fast TPC. This is because, with slow TPC, the received signal power variations due to fading remain intact and this results in a larger capture effect.

  • Macrodiversity Effect Using ROF Ubiquitous Antenna Architecture in Wireless CDMA System

    Hideaki OHTSUKI  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER-Photonics for Antenna Systems

      Vol:
    E86-C No:7
      Page(s):
    1197-1202

    This paper proposes an ROF ubiquitous antenna architecture for the wireless CDMA system. The proposed system separates each component of independent signals passing through the multipath in radio and optical links, which are gathered at passive double star link, by using RAKE reception and the macrodiversity effect is obtained. Theoretical analysis shows that the proposed system improves BER performance by 22 dB and reduces the transmission power and its control range by 19 dB.

  • High-Frequency Magneto-Optic Probe Based on BiRIG Rotation Magnetization

    Etsushi YAMAZAKI  Shinichi WAKANA  Hyonde PARK  Masato KISHI  Masahiro TSUCHIYA  

     
    INVITED PAPER-Measurements Techniques

      Vol:
    E86-C No:7
      Page(s):
    1338-1344

    In this paper, we describe our study on a novel high-frequency magnetic field probe based both on the BiRIG rotation magnetization (RM) phenomenon and the third-generation optical probing scheme. First, we explain our experimental investigation on RF sensitivity and frequency response of the RM-based Faraday effect in a commercially available Bi-substituted rare-earth iron garnet plate. Second, we report on the implementation of fiber-optic magneto-optic (MO) probe heads with bandwidths of 10 GHz or broader, which have been brought about by careful arrangement of the magnetization axis of a single-domain crystal and the highly sensitive fiber-edge optical probing scheme. Third, we describe a few RF magnetic field distribution measurements carried out successfully over GHz-band microstrip line circuits. The results of the study imply the substantial potential of the present MO probe head for the RF current visualization.

  • High-Temperature Superconductive Photomixer Patch Antenna: Theory and Design

    Daryoosh SAEEDKIA  A. Hamed MAJEDI  S. SAFAVI-NAEINI  Raafat R. MANSOUR  

     
    PAPER-MWP Devices

      Vol:
    E86-C No:7
      Page(s):
    1318-1327

    This paper presents a novel mm-wave and THz device concept, with a detailed physical modeling and quantitative performance evaluation, called as CW HTS (high temperature superconductive) photomixer/antenna. Optical heterodyne photomixing in the DC-biased HTS strip has been employed to create mm-wave and THz signal, and the size of strip on the grounded dielectric substrate is designed to have an efficient broadside radiation. Incorporating the HTS microstrip configuration as both photomixing media and radiation element at the same time not only increases the CW photocurrent but also the radiation power, while it reduces the radiation loss associated with the patch antenna. Two possible configurations called as longitudinal and transversal will be introduced and their photomixing efficiency and output radiation power will be compared. The detailed analysis along with the optimum design of the geometrical parameters of the microstrip structure shows that the transversal scheme exhibits higher radiation power. The typical nW output power can be obtained by mW laser pump power for frequencies up to the gap frequency of the HTS material. The output power of the proposed device is theoretically higher than the experimentally available data from a Low-Temperature-Grown (LTG) GaAs photomixer integrated with dipole or bow-tie antenna reported in the literature.

  • Analysis of Tunable Delay-Line Using an Optical Single-Sideband Modulator

    Tetsuya KAWANISHI  Masayuki IZUTSU  

     
    INVITED PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1230-1235

    We investigated a tunable delay-line using an optical single-sideband modulator and an optical fiber loop. The single-sideband modulator consists of four optical modulators and an RF electric signal source. The fiber loop has a fiber Bragg grating and a couple of optical circulators. The number of times light circulates in the loop depends on the frequency of the rf-signal fed to the modulators. By using numerical simulations, we discussed the deformation of the waveform in the delay-line due to the fiber Bragg gratings, the modulators and the optical amplifiers put in the loop.

  • Photoconductive Generation and Detection of Guided-Wave and Free-Space Terahertz Waveforms

    Abdulhakem Y. ELEZZABI  Jonathan F. HOLZMAN  

     
    INVITED PAPER-Signal Generation and Processing Based on MWP Techniques

      Vol:
    E86-C No:7
      Page(s):
    1218-1225

    We report on several photoconductive (PC) geometries for the generation of both guided-wave and free-space terahertz (THz) waveforms. It is found that guided-wave THz electrical waveforms can be produced through both PC self-switching and frozen wave generation--eliminating the need for an ultrashort carrier lifetime in the semiconductor substrate. The concept of PC switching is also applied to the generation of free-space THz waveforms, and various ZnSe detectors are investigated as potential electro-optic THz sensors.

  • Spatial Optical Signal Processing Beam Forming Network for 2-Dimensional Beam Steering

    Keizo INAGAKI  Yoshio KARASAWA  

     
    PAPER-Photonics for Antenna Systems

      Vol:
    E86-C No:7
      Page(s):
    1209-1217

    In this paper, an optical signal processing beam forming network (BFN) for two-dimensional (2-D) beam steering is proposed and experimentally demonstrated. Two lightwaves, called the signal and reference, are both Fourier transformed, combined, and then down-converted into RF signals using an optical heterodyne technique. A simple combination of orthogonal one-dimensional position scannings of the signal and reference lightwaves generates RF signals with phase distributions for 2-D beam steering. The system operation and optical losses are theoretically analyzed. Using graded index fiber (GIF) lensed single mode fibers (SMFs), total optical loss of the sampling fiber array is evaluated to be 4.5 dB from the fiber to fiber loss measurements. Using an experimental optical signal processing BFN at 25 GHz, 2-D beam steering is demonstrated at 0, 10, 20, and 30through the measured amplitudes and phases of RF signals for 16 position sets of the signal and reference fibers. The proposed method has the potential to provide ultra-fast beam scanning by utilizing optical switching technologies.

  • Improvement of Cone Beam CT Image Using Singularity Detection

    Yi-Qiang YANG  Nobuyuki NAKAMORI  Yasuo YOSHIDA  

     
    PAPER

      Vol:
    E86-D No:7
      Page(s):
    1206-1213

    In medical diagnosis, cone beam CT increases the dose absorbed by a patient. However, the radiographic noise (such as quantum noise) in a CT image increases when radiation exposure is reduced. In this paper, we propose a method to improve the CT image degraded by the quantum mottle based on 2-D wavelet transform modulus sum (WTMS). The noise and regular parts of an image can be observed by tracing the evolution of its 2-D WTMS across scales. Our experimental results show that most of the quantum mottle in the 2-D projections is removed by the proposed method and the edges preserved well. We investigate the relation between the number of X-ray photons and the quality of the denoised images. The result shows the possibility that a patient's dose can be reduced about 10% with the same visual quality by our method.

  • A GA-Based Fuzzy Traffic Controller for an Intersection with Time-Varying Flow Rate

    Nam-Chul HUH  Byeong Man KIM  Jong Wan KIM  Seung Ryul MAENG  

     
    PAPER-Artificial Intelligence, Cognitive Science

      Vol:
    E86-D No:7
      Page(s):
    1270-1279

    Many fuzzy traffic controllers adjust the extension time of the green phase with the fuzzy input variables, arrival and queue. However, in our experiments, we found that the two input variables are not sufficient for an intersection where traffic flow rates change and thus, in this paper, traffic volume is used as an additional variable. Traffic volume is defined as the number of vehicles entering an intersection every second. In designing a fuzzy traffic controller, an ad-hoc approach is usually used to find membership functions and fuzzy control rules showing good performance. That is, initial ones are generated by human operators and modified many times based on the results of simulation. To partially overcome the limitations of the ad-hoc approach, we use genetic algorithms to automatically determine the membership functions for terms of each fuzzy variable when fuzzy control rules are given by hand. The experimental results indicate that a fuzzy logic controller with volume variable outperforms conventional ones with no volume variable in terms of the average delay and the average velocity. Also, the controller shows better performance when membership functions generated by a genetic algorithms instead of ones generated by hand are used.

  • Fast Algorithm for Aligning Images Having Large Displacements

    JunWei HSIEH  Cheng-Chin CHIANG  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:7
      Page(s):
    1321-1324

    This paper presents an edge alignment method for stitching images when they have large displacements and light changes. First, without building any correspondences, the proposed method predicts all possible translation solutions by examining the consistency between edge positions. Then, the best solution can be obtained from the set of possible translations by a verification process. The proposed method has better capabilities to stitch images when they have large light changes and displacements. Since the method doesn't require building any correspondences or involve any optimization process, it performs more efficiently than other correlation techniques like feature-matching or phase-correlation approaches. Due to its simplicity and efficiency, different images can be very quickly aligned (less than 0.1 seconds) with the proposed method. Experimental results are provided to verify the superiority of the proposed method.

  • Introduction of a New Concept, Age, into the Multiobjective Evolutionary Algorithm in the Two Dimensional Space

    Young-Hoon KANG  Zeungnam BIEN  

     
    LETTER-Algorithms

      Vol:
    E86-D No:7
      Page(s):
    1304-1309

    Recently, several promising multiobjective evolutionary algorithms such as PESA, NSGA-II, and SPEA2 have been developed. In this paper, we also propose a new multiobjective evolutionary algorithm whose performance is comparable to or better than those promising algorithms. In the new algorithm proposed here, an age concept is introduced and utilized to make the efficiency of the offspring generation high. The performance of the proposed algorithm is superior to those of the promising algorithms mentioned above for several test functions. In this paper, the proposed algorithm will be explained only in two dimensional parameter and objective space to show manifestly the meaning of an age concept.

  • Segmentation of Spatially Variant Image Textures Using Local Spatial Frequency Analysis

    Bertin R. OKOMBI-DIBA  Juichi MIYAMICHI  Kenji SHOJI  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:7
      Page(s):
    1289-1303

    A wide variety of visual textures could be successfully modeled as spatially variant by quantitatively describing them through the variation of their local spatial frequency and/or local orientation components. This class of patterns includes flow-like, granular or oriented textures. Modeling is achieved by assuming that locally, textured images contain a single dominant component describing their local spatial frequency and modulating amplitude or contrast. Spatially variant textures are non-homogeneous in the sense of having nonstationary local spectra, while remaining locally coherent. Segmenting spatially variant textures is the challenging task undertaken in this paper. Usually, the goal of texture segmentation is to split an image into regions with homogeneous textural properties. However, in the case of image regions with spatially variant textures, there is no global homogeneity present and thus segmentation passes through identification of regions with globally nonstationary, but locally coherent, textural content. Local spatial frequency components are accurately estimated using Gabor wavelet outputs along with the absolute magnitude of the convolution of the input image with the first derivatives of the underlying Gabor function. In this paper, a frequency estimation approach is used for segmentation. Indeed, at the boundary between adjacent textures, discontinuities occur in texture local spatial frequency components. These discontinuities are interpreted as corresponding to texture boundaries. Experimental results are in remarkable agreement with human visual perception, and demonstrate the effectiveness of the proposed technique.

  • Intelligent Email Categorization Based on Textual Information and Metadata

    Jihoon YANG  Venkat CHALASANI  Sung-Yong PARK  

     
    PAPER-Artificial Intelligence, Cognitive Science

      Vol:
    E86-D No:7
      Page(s):
    1280-1288

    A set of systematic experiments on intelligent email categorization has been conducted with different machine learning algorithms applied to different parts of data in order to achieve the most correct classification. The categorization is based on not only the body but also the header of an email message. The metadata (e.g. sender name, sender organization, etc.) provide additional information that can be exploited to improve the categorization capability. Results of experiments on real email data demonstrate the feasibility of our approach to find the best learning algorithm and the metadata to be used, which is a very significant contribution in email classification. It is also shown that categorization based only on the header information is comparable or superior to that based on all the information in a message for all the learning algorithms considered.

  • Asynchronous Array Multiplier with an Asymmetric Parallel Array Structure

    Chan-Ho PARK  Byung-Soo CHOI  Suk-Jin KIM  Eun-Gu JUNG  Dong-Ik LEE  

     
    PAPER-Computer System Element

      Vol:
    E86-D No:7
      Page(s):
    1243-1249

    This paper presents a new asynchronous multiplier. The original array structure is divided into two asymmetric arrays, called an upper array and a lower array. For the lower array, Left to Right scheme is applied to take advantage of a fast computation and low power consumption as well. Simulation results show that the proposed multiplier has 40% of performance improvement with a relatively lower power consumption. The multiplier has been implemented in a CMOS 0.35 µm technology and proved functionally correct.

21321-21340hit(30728hit)