The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ULSI(61hit)

21-40hit(61hit)

  • OTHR Impulsive Interference Suppression in Strong Clutter Background

    Tao LIU  Yu GONG  Yaohuan GONG  

     
    PAPER-Digital Signal Processing

      Vol:
    E92-A No:11
      Page(s):
    2866-2873

    External interferences can severely degrade the performance of an Over-the-horizon radar (OTHR), so suppression of external interferences in strong clutter environment is the prerequisite for the target detection. The traditional suppression solutions usually began with clutter suppression in either time or frequency domain, followed by the interference detection and suppression. Based on this traditional solution, this paper proposes a method characterized by joint clutter suppression and interference detection: by analyzing eigenvalues in a short-time moving window centered at different time position, clutter is suppressed by discarding the maximum three eigenvalues at every time position and meanwhile detection is achieved by analyzing the remained eigenvalues at different position. Then, restoration is achieved by forward-backward linear prediction using interference-free data surrounding the interference position. In the numeric computation, the eigenvalue decomposition (EVD) is replaced by singular values decomposition (SVD) based on the equivalence of these two processing. Data processing and experimental results show its efficiency of noise floor falling down about 10-20 dB.

  • A Novel Robust Impulsive Chaos Synchronization Approach for Uncertain Complex Dynamical Networks

    Nariman MAHDAVI MAZDEH  Mohammad Bagher MENHAJ  Heidar Ali TALEBI  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:10
      Page(s):
    2499-2507

    This paper presents a novel approach for robust impulsive synchronization of uncertain complex dynamical networks, each node of which possesses chaotic dynamics with different parameters perturbation and external disturbances as well as unknown but bounded network coupling effects. A new sufficient condition is proposed that guarantees the global robust synchronizing of such a network. Finally, the effectiveness of the proposed approach is evaluated by performing simulations on two illustrative examples.

  • Enhancing Salt-and-Pepper Noise Removal in Binary Images of Engineering Drawing

    Hasan S. M. AL-KHAFFAF  Abdullah Z. TALIB  Rosalina Abdul SALAM  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E92-D No:4
      Page(s):
    689-704

    Noise removal in engineering drawing is an important operation performed before other image analysis tasks. Many algorithms have been developed to remove salt-and-pepper noise from document images. Cleaning algorithms should remove noise while keeping the real part of the image unchanged. Some algorithms have disadvantages in cleaning operation that leads to removing of weak features such as short thin lines. Others leave the image with hairy noise attached to image objects. In this article a noise removal procedure called TrackAndMayDel (TAMD) is developed to enhance the noise removal of salt-and-pepper noise in binary images of engineering drawings. The procedure could be integrated with third party algorithms' logic to enhance their ability to remove noise by investigating the structure of pixels that are part of weak features. It can be integrated with other algorithms as a post-processing step to remove noise remaining in the image such as hairy noise attached with graphical elements. An algorithm is proposed by incorporating TAMD in a third party algorithm. Real scanned images from GREC'03 contest are used in the experiment. The images are corrupted by salt-and-pepper noise at 10%, 15%, and 20% levels. An objective performance measure that correlates with human vision as well as MSE and PSNR are used in this experiment. Performance evaluation of the introduced algorithm shows better-quality images compared to other algorithms.

  • Analysis and Optimization for the Operating Mechanism of Air Circuit Breaker

    Degui CHEN  Liang JI  Yunfeng WANG  Yingyi LIU  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E91-C No:8
      Page(s):
    1280-1285

    This paper simulates the dynamic behavior of the operating mechanism of ACB, and analyzes factors influencing the mechanism's operating time. First, it builds a dynamic model for the mechanism with virtual prototype technology. Experiment validation is carried out to prove the correctness of the model. Based on this model, it puts emphasis on analyzing the influence of electro-dynamic repulsion force on the operating time of the mechanism. Simulation and experimental results show that after adding electric repulsion force to the model, the operating time is shortened about 1.1 ms. Besides the repulsion force, other influencing factors including the stiffness of opening spring, locations of every key axis, mass and centroidal coordinates of every mechanical part are analyzed as well. Finally, it makes an optimum design for the mechanism. After optimization, the velocity of operating mechanism is improved about 6.7%.

  • Optimizing Markov Model Parameters for Asynchronous Impulsive Noise over Broadband Power Line Communication Network

    Tan-Hsu TAN  San-Yuan HUANG  Ching-Su CHANG  Yung-Fa HUANG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E91-A No:6
      Page(s):
    1533-1536

    A statistical model based on a partitioned Markov-chains model has previously been developed to represent time domain behavior of the asynchronous impulsive noise over a broadband power line communication (PLC) network. However, the estimation of its model parameters using the Simplex method can easily trap the final solution at a local optimum. This study proposes an estimation scheme based on the genetic algorithm (GA) to overcome this difficulty. Experimental results show that the proposed scheme yields estimates that more closely match the experimental data statistics.

  • Iterative Multiuser Detection/Decoding for Coded CDMA Systems in Non-Gaussian Noise

    Ivan KU  Sze Wei LEE  Teong Chee CHUAH  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E90-B No:7
      Page(s):
    1584-1593

    We propose a robust iterative multiuser receiver for decoding convolutional coded code-division multiple access (CDMA) signals in both Gaussian and non-Gaussian channel noise. The receiver is derived from a modified maximum a-posteriori (MAP) algorithm called the max-log-MAP algorithm for robustness against erroneous channel variance estimation. Furthermore, the effect of destructive outliers arising from impulsive noise is mitigated in the proposed receiver by incorporating the robust Huber penalty function into the multiuser detector. The proposed receiver is shown to perform satisfactorily over Gaussian and non-Gaussian impulsive channels. In every iteration, cumulative improvement in the quality of the a-posteriori probabilities is also demonstrated.

  • Analysis and Research on Electro-Dynamic Repulsion Force Acting on the Paralleled Conductors in Air Circuit Breaker

    Yingyi LIU  Degui CHEN  Xingwen LI  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E90-C No:7
      Page(s):
    1466-1471

    For the optimization design of air circuit breaker (ACB), it is important and necessary to calculate the electro-dynamic repulsion force acting on the movable contact. A method based on 3-D FEM with the equations that describe the relationships among current, magnetic field and repulsion force, which takes the ferromagnet into account, is adopted to calculate the electro-dynamic repulsion force. The method enables one to analyze the factors that affect the electro-dynamic repulsion force, including the number of the movable conductor parallel branches as well as the location of the axis and the shape of the flexible connection. The discussion of the calculation results is also presented in this paper.

  • Static and Dynamic Analysis for Contactor with a New Type of Permanent Magnet Actuator

    Mingzhe RONG  Jianyong LOU  Yiying LIU  Jian LI  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E89-C No:8
      Page(s):
    1210-1216

    A new type of permanent magnet actuator driven by electromagnetic repulsive force in breaking course and electromagnetic attraction force during closing course is presented in this paper, and the static and dynamic characteristics for contactor with this new type actuator are mainly focused on by simulation and experiment simultaneously. Firstly, the static electromagnetic attraction force in closing course and electromagnetic repulsive force in breaking course are studied by FEM simulation and experiment. Secondly, by coupling of the electrical and mechanical differential equations, the dynamic electromagnetic attraction force in closing course and dynamic electromagnetic repulsive force in breaking course are obtained respectively. Thirdly, by constructing the mechanical model of contact system and permanent magnet actuator, the displacements of moving contact and moving core while both contactors' closing and breaking are obtained by simulation and experimental study. It is indicated that simulation results coincide well with that of experiment.

  • Investigation on the Interruption Process of Molded Case Circuit Breakers Including the Influence of Blow Open Force

    Xingwen LI  Degui CHEN  Qian WANG  Ruicheng DAI  Honggang XIANG  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E89-C No:8
      Page(s):
    1187-1193

    To one double-breaker model, experimental investigation on blow open force was carried out. It demonstrates that the ratio between the emerging blow open force and arc power FB/ui decreases with the arcing time, the contact gap has less effect on FB/ui, and the characteristics of the blow open force are similar when the peak value of the short circuit current is beyond 4 kA. Then, according to the experimental data and conclusions, considering the influence of blow open force, the interruption process of molded case circuit breakers (MCCBs) was investigated. It demonstrates the blow open force has significant influence on interruption process and the proposed method is effective to evaluate new design of MCCBs.

  • A Linear Time Algorithm for Binary Fingerprint Image Denoising Using Distance Transform

    Xuefeng LIANG  Tetsuo ASANO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E89-D No:4
      Page(s):
    1534-1542

    Fingerprints are useful for biometric purposes because of their well known properties of distinctiveness and persistence over time. However, owing to skin conditions or incorrect finger pressure, original fingerprint images always contain noise. Especially, some of them contain useless components, which are often mistaken for the terminations that are an essential minutia of a fingerprint. Mathematical Morphology (MM) is a powerful tool in image processing. In this paper, we propose a linear time algorithm to eliminate impulsive noise and useless components, which employs generalized and ordinary morphological operators based on Euclidean distance transform. There are two contributions. The first is the simple and efficient MM method to eliminate impulsive noise, which can be restricted to a minimum number of pixels. We know the performance of MM is heavily dependent on structuring elements (SEs), but finding an optimal SE is a difficult and nontrivial task. So the second contribution is providing an automatic approach without any experiential parameter for choosing appropriate SEs to eliminate useless components. We have developed a novel algorithm for the binarization of fingerprint images [1]. The information of distance transform values can be obtained directly from the binarization phase. The results show that using this method on fingerprint images with impulsive noise and useless components is faster than existing denoising methods and achieves better quality than earlier methods.

  • A Robust Detector for Rapid Code Acquisition in Non-Gaussian Impulsive Channels

    Seokho YOON  Suk Chan KIM  Sun Yong KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    809-815

    Recently, a novel detector was proposed by the authors for code acquisition in non-Gaussian impulsive channels [3], which dramatically outperforms the conventional squared-sum detector; however, it requires exact knowledge of the non-Gaussian noise dispersion. In this paper, a robust detector is proposed, which employs the signs and ranks of the received signal samples, instead of their actual values, and so does not require knowledge of the non-Gaussian noise dispersion. The acquisition performance of the proposed detector is compared with that of the detector of [3] in terms of the mean acquisition time. The simulation results show that the proposed scheme is not only robust to deviations from the true value of the non-Gaussian noise dispersion, but also has comparable performance to that of the scheme of [3] using exact knowledge of the non-Gaussian noise dispersion.

  • Robust Speech Recognition Using Discrete-Mixture HMMs

    Tetsuo KOSAKA  Masaharu KATOH  Masaki KOHDA  

     
    PAPER-Speech and Hearing

      Vol:
    E88-D No:12
      Page(s):
    2811-2818

    This paper introduces new methods of robust speech recognition using discrete-mixture HMMs (DMHMMs). The aim of this work is to develop robust speech recognition for adverse conditions that contain both stationary and non-stationary noise. In particular, we focus on the issue of impulsive noise, which is a major problem in practical speech recognition system. In this paper, two strategies were utilized to solve the problem. In the first strategy, adverse conditions are represented by an acoustic model. In this case, a large amount of training data and accurate acoustic models are required to present a variety of acoustic environments. This strategy is suitable for recognition in stationary or slow-varying noise conditions. The second is based on the idea that the corrupted frames are treated to reduce the adverse effect by compensation method. Since impulsive noise has a wide variety of features and its modeling is difficult, the second strategy is employed. In order to achieve those strategies, we propose two methods. Those methods are based on DMHMM framework which is one type of discrete HMM (DHMM). First, an estimation method of DMHMM parameters based on MAP is proposed aiming to improve trainability. The second is a method of compensating the observation probabilities of DMHMMs by threshold to reduce adverse effect of outlier values. Observation probabilities of impulsive noise tend to be much smaller than those of normal speech. The motivation in this approach is that flooring the observation probability reduces the adverse effect caused by impulsive noise. Experimental evaluations on Japanese LVCSR for read newspaper speech showed that the proposed method achieved the average error rate reduction of 48.5% in impulsive noise conditions. Also the experimental results in adverse conditions that contain both stationary and impulsive noises showed that the proposed method achieved the average error rate reduction of 28.1%.

  • High Density Differential Transmission Line Structure on Si ULSI

    Hiroyuki ITO  Kenichi OKADA  Kazuya MASU  

     
    PAPER

      Vol:
    E87-C No:6
      Page(s):
    942-948

    The present paper proposes differential transmission line structures on Si ULSI. Interconnect structures are examined using numerical results from a two-dimensional electromagnetic simulation (Ansoft, 2D Extractor). The co-planar and diagonal-pair lines are found to have superior characteristics for gigahertz signal propagation through long interconnects. The proposed diagonal-pair line can reduce the crosstalk noise and interconnect resource concurrently.

  • Noise Removal from Highly Corrupted Color Images with Adaptive Neighborhoods

    Mikhail MOZEROV  Vitaly KOBER  Tae-Sun CHOI  

     
    LETTER-Image

      Vol:
    E86-A No:10
      Page(s):
    2713-2717

    A novel effective method for detection and removal impulse noise in highly corrupted color images is proposed. This detection-estimation method consists of two steps. Outliers are first detected using spatial relations between the color components. Then the detected noise pixels are replaced with the output of the vector median filter over a local spatially connected area excluding the outliers. Simulation results in a test color image show a superior performance of the proposed filtering algorithm comparing to the conventional vector median filter. The comparisons are made using a mean square error and a mean absolute error criteria.

  • Theoretical Analysis of MC-CDMA Forward Link Performance in the Presence of Pure Impulsive Interference

    Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E86-B No:8
      Page(s):
    2425-2432

    In this paper, expressions are derived for the bit error rate (BER) of the multicarrier-CDMA (MC-CDMA) downlink in the presence of pure impulsive interference and a frequency-selective fading and the BER performance is numerically evaluated by a Monte-Carlo simulation method. Minimum mean square error combining (MMSEC) and orthogonal restoration combining (ORC) are considered for frequency-domain equalization. The joint weight of antenna diversity reception using maximal ratio combining (MRC) and frequency equalization combining is derived. The MC-CDMA transmission performance in the presence of pure impulsive interference is compared with that of DS-CDMA transmission.

  • Research on Parameter Determination for Smoothed and Differential Value Estimator

    Takanori EMARU  Takeshi TSUCHIYA  

     
    PAPER-Digital Signal Processing

      Vol:
    E86-A No:7
      Page(s):
    1732-1741

    In our previous research, we proposed a nonlinear digital filter to Estimate the Smoothed and Differential values of the sensor inputs by using Sliding mode system (ESDS). This estimator is able to eliminate impulsive noise efficiently from time series data. We applied this filter to processing outputs of robot sensors, and it became possible to perform robust environment recognition. ESDS is designed using a theory of variable structure system (VSS) with sliding mode. In short, ESDS is a nonlinear filter. Therefore, it is very difficult to clarify the behavior of the system analytically. Consequentially, we deal with the step function with impulsive noise as an example, and we attempt to eliminate this impulsive noise by keeping the sudden shift of signals. In this case, there is a trade-off between the noise elimination ability and the tracking performance for an input signal. Although ESDS is a nonlinear filter, it has the same trade-off as linear filters such as a low-pass filter. In order to satisfy these two conditions simultaneously, we use two filters whose parameters are independent of each other. Furthermore, in order to repress the adverse affect of impulsive noise in the steady-state, we introduced the boundary layer. Generally, a boundary layer is used so as to inhibit the harmful effect of chattering. Chattering is caused in the sliding mode system when the state of the system vibrates on the switching line of a sliding mode system. By introducing the boundary layer to ESDS, we can repress the adverse effect of impulsive noise in the steady-state. According to these considerations, we clarify the relationship between these characteristics of ESDS and the arbitrary parameters.

  • Analysis of DS-CDMA Transmission Performance in the Presence of Pure Impulsive Interference over Frequency Selective Fading

    Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:11
      Page(s):
    2395-2404

    It is well known that some of urban man-made noises can be characterized by a wideband impulsive noise (pure impulsive noise). The presence of this pure impulsive noise may significantly degrade the wireless digital transmission performance. As the data rate becomes higher and the radio bandwidth becomes wider, the performance degradation due to pure impulsive interference may become larger. In this paper, the DS-CDMA transmission performance in the presence of pure impulsive interference is theoretically analyzed. First, the BER expressions are derived for DS-CDMA with antenna diversity and Rake combining in a frequency selective fading channel. Then, the numerical computation based on Monte-Carlo method is performed to evaluate the BER performance. Two types of error floor are observed: one is due to impulsive interference and the other due to the multi access interference (MAI). It is found that the error floor due to impulsive interference becomes larger as the area of impulse and the error floor is linearly proportional to the impulse occurrence rate. Furthermore, it is found that the antenna diversity and Rake combining do not help to reduce the error floor caused by impulsive interference and that the influence of impulsive interference can be negligible when the channel is limited by the MAI (i.e., large number of users are in communication).

  • Effects of Impulsive Noise and Self Co-channel Interference on the Bluetooth Scatternet

    Do-Gyun KIM  Jae-Sung ROH  Sung-Joon CHO  Jung-Sun KIM  

     
    LETTER

      Vol:
    E85-B No:10
      Page(s):
    2198-2202

    The objective of this paper is to evaluate the impacts of impulsive class-A noise, co-channel interference due to other piconet, Rician fading on the packet error rate (PER), and throughput performance in the Bluetooth scatternet. Simulation results illustrate the significant difference in performance between synchronous and asynchronous Bluetooth systems. The paper also provides the insights on how to design Bluetooth scatternet for minimal PER and maximum throughput performance.

  • Anticontrol of Chaos for Continuous-Time Systems

    Guanrong CHEN  Ling YANG  Zengrong LIU  

     
    LETTER

      Vol:
    E85-A No:6
      Page(s):
    1333-1335

    This paper studies the anticontrol problem of making a continuous-time system chaotic by using impulsive control. The controller is designed to ensure the controlled orbit be bounded and, meanwhile, the controlled system have positive Lyapunov exponents, which are achieved near a stable limit cycle of the system. One illustrative example is given.

  • Blind Adaptive H Multiuser Detection for CDMA Systems with Impulsive Noise

    Ching-Tai CHIANG  Ann-Chen CHANG  Yuan-Hwang CHEN  

     
    LETTER-Transmission Systems and Transmission Equipment

      Vol:
    E84-B No:11
      Page(s):
    3060-3063

    In this letter, blind adaptive H multiuser detection is developed by employing a generalized sidelobe canceler (GSC) with and without subweight partition scheme. It is shown that the adaptive H algorithm with subweight approach has the advantages of fast convergence speed, insensitivity of dynamic estimate error, and suitability for arbitrary ambient noise over the conventional H and the RLS-based adaptive algorithms.

21-40hit(61hit)