1-15hit |
Yuta SASAKI Fang SHANG Shouhei KIDERA Tetsuo KIRIMOTO
Ultra-wideband millimeter wave radars significantly enhance the capabilities of three-dimensional (3D) imaging sensors, making them suitable for short-range surveillance and security purposes. For such applications, developed the range point migration (RPM) method, which achieves highly accurate surface extraction by using a range-point focusing scheme. However, this method is inaccurate and incurs great computation cost for complicated-shape targets with many reflection points, such as the human body. As an essential solution to this problem, we introduce herein a range-point clustering algorithm that exploits, the RPM feature. Results from numerical simulations assuming 140-GHz millimeter wavelength radar verify that the proposed method achieves remarkably accurate 3D imaging without sacrificing computational efficiency.
Kota IWANAGA Keiji JIMI Isamu MATSUNAMI
Case studies have reported that pedestrian detection methods using vehicle radar are not complete systems because each system has specific limitations at the cost of the calculating amounts, the system complexity or the range resolution. In this letter, we proposed a novel pedestrian detection method by template matching using Gabor filter bank, which was evaluated based on the data observed by 24GHz UWB radar.
Toshiki MANAKA Shouhei KIDERA Tetsuo KIRIMOTO
Ultra-wideband radar exhibits high range resolution, and excellent capability for penetrating dielectric media, especially when using lower frequency microwaves. Thus, it has a great potential for innovative non-destructive testing of aging roads or bridges or for non-invasive medical imaging applications. In this context, we have already proposed an accurate dielectric constant estimation method for a homogeneous dielectric medium, based on a geometrical optics (GO) approximation, where the dielectric boundary points and their normal vectors are directly reproduced using the range point migration (RPM) method. In addition, to compensate for the estimation error incurred by the GO approximation, a waveform compensation scheme employing the finite-difference time domain (FDTD) method was incorporated. This paper shows the experimental validation of this method, where a new approach for suppressing the creeping wave along the dielectric boundary is also introduced. The results from real observation data validate the effectiveness of the proposed method in terms of highly accurate dielectric constant estimation and embedded object boundary reconstruction.
Takuya NIIMI Shouhei KIDERA Tetsuo KIRIMOTO
Microwave ultra-wideband (UWB) radar systems are advantageous for their high-range resolution and ability to penetrate dielectric objects. Internal imaging of dielectric objects by UWB radar is a promising nondestructive method of testing aging roads and bridges and a noninvasive technique for human body examination. For these applications, we have already developed an accurate internal imaging approach based on the range points migration (RPM) method, combined with a method that efficiently estimates the dielectric constant. Although this approach accurately extracts the internal boundary, it is applicable only to highly conductive targets immersed in homogeneous dielectric media. It is not suitable for multi-layered dielectric structures such as human tissues or concrete objects. To remedy this limitation, we here propose a novel dielectric constant and boundary extraction method for double-layered materials. This new approach, which simply extends the Envelope method to boundary extraction of the inner layer, is evaluated in finite difference time domain (FDTD)-based simulations and laboratory experiments, assuming a double-layered concrete cylinder. These tests demonstrate that our proposed method accurately and simultaneously estimates the dielectric constants of both media and the layer boundaries.
Ryo YAMAGUCHI Shouhei KIDERA Tetsuo KIRIMOTO
Radar systems using ultra-wideband (UWB) signals have definitive advantages in high range resolution. These are suitable for accurate 3-dimensional (3-D) sensing by rescue robots operating in disaster zone settings, where optical sensing is not applicable because of thick smog or high-density gas. For such applications, where no a priori information of target shape and position is given, an accurate method for 3-D imaging and motion estimation is strongly required for effective target recognition. In addressing this issue, we have already proposed a non-parametric 2-dimensional (2-D) imaging method for a target with arbitrary target shape and motion including rotation and translation being tracked using a multi-static radar system. This is based on matching target boundary points obtained using the range points migration (RPM) method extended to the multi-static radar system. Whereas this method accomplishes accurate imaging and motion estimation for single targets, accuracy is degraded severely for multiple targets, due to interference effects. For a solution of this difficulty, this paper proposes a method based on a novel matching scheme using not only target points but also normal vectors on the target boundary estimated by the Envelope method; interference effects are effectively suppressed when incorporating the RPM approach. Results from numerical simulations for both 2-D and 3-D models show that the proposed method simultaneously achieves accurate target imaging and motion tracking, even for multiple moving targets.
Ayumi YAMARYO Shouhei KIDERA Tetsuo KIRIMOTO
Ultra-wide band (UWB) radar has a great advantage for range resolution, and is suitable for 3-dimensional (3-D) imaging sensor, such as for rescue robots or surveillance systems, where an accurate 3-dimensional measurement, impervious to optical environments, is indispensable. However, in indoor sensing situations, an available aperture size is severely limited by obstacles such as collapsed furniture or rubles. Thus, an estimated region of target image often becomes too small to identify whether it is a human body or other object. To address this issue, we previously proposed the image expansion method based on the ellipse extrapolation, where the fitting space is converted from real space to data space defined by range points to enhance the extrapolation accuracy. Although this method achieves an accurate image expansion for some cases, by exploiting the feature of the efficient imaging method as range points migration (RPM), there are still many cases, where it cannot maintain sufficient extrapolation accuracy because it only employs the single scattered component for imaging. For more accurate extrapolation, this paper extends the above image expansion method by exploiting double-scattered signals between the target and the wall in an indoor environment. The results from numerical simulation validate that the proposed method significantly expands the extrapolated region for multiple elliptical objects, compared with that obtained using only single scattered signal.
Detection of human respiration and heartbeat is an essential demand in medical monitoring, healthcare vigilance, as well as in rescue activities after earthquakes. Radar is an important tool to detect human respiration and heartbeat. Compared to body-attached sensors, radar has the advantage of conducting detection without contacting the subject, which is favorable in practical usage. In this paper, we conduct fundamental studies on ultra-wideband (UWB) radar for detection of the respiration and heartbeat by computer simulations. The main achievement of our work is the development of a UWB radar simulation system. Using the developed simulation system, three UWB frequency bands, i.e., 3.4-4.8GHz, 7.25-10.25GHz, as well as 3.1-10.6GHz, are compared in terms of their respiration and heartbeat detection performance. Our results show that the first two bands present identical performance, while the third one presents much better performance. The effects of using multiple antennas are also evaluated. Our results show that increasing the number of antennas can steadily increase the detection ability.
Yoshihiko KUWAHARA Saori MIURA Yusuke NISHINA Kaiji MUKUMOTO Hiroyuki OGURA Harumi SAKAHARA
A microwave mammography setup for clinical testing was developed and used to successfully carry out an initial clinical test. The equipment is based on multistatic ultra wideband (UWB) radar, which features a multistatic microwave imaging via space time (MS-MIST) algorithm for high resolution and a conformal array with an aspirator for fixing the breast in place. In this paper, an outline of the equipment, a numerical simulation, and clinical test results are presented.
Ryo YAMAGUCHI Shouhei KIDERA Tetsuo KIRIMOTO
Ultra-wideband pulse radar is a promising technology for the imaging sensors of rescue robots operating in disaster scenarios, where optical sensors are not applicable because of thick smog or high-density gas. For the above application, while one promising ultra-wideband radar imaging algorithm for a target with arbitrary motion has already been proposed with a compact observation model, it is based on an ellipsoidal approximation of the target boundary, and is difficult to apply to complex target shapes. To tackle the above problem, this paper proposes a non-parametric and robust imaging algorithm for a target with arbitrary motion including rotation and translation being observed by multi-static radar, which is based on the matching of target boundary points obtained by the range points migration (RPM) algorithm extended to the multi-static radar model. To enhance the imaging accuracy in situations having lower signal-to-noise ratios, the proposed method also adopts an integration scheme for the obtained range points, the antenna location part of which is correctly compensated for the estimated target motion. Results from numerical simulations show that the proposed method accurately extracts the surface of a moving target, and estimates the motion of the target, without any target or motion model.
Shouhei KIDERA Tetsuo KIRIMOTO
UWB (Ultra Wideband) radar offers great promise for advanced near field sensors due to its high range resolution. In particular, it is suitable for rescue or resource exploration robots, which need to identify a target in low visibility or acoustically harsh environments. Recently, radar algorithms that actively coordinate multiple scattered components have been developed to enhance the imaging range beyond what can be achieved by synthesizing a single scattered component. Although we previously developed an accurate algorithm for imaging shadow regions with low computational complexity using derivatives of observed ranges for double scattered signals, the algorithm yields inaccurate images under the severe interference situations that occur with complex-shaped or multiple objects or in noisy environments. This is because small range fluctuations arising from interference or random noises can produce non-negligible image degradation owing to inaccuracy in the range derivative calculation. As a solution to this difficulty, this paper proposes a novel imaging algorithm that does not use the range derivatives of doubly scattered signals, and instead extracts a feature of expansive distributions of the observed ranges, using a unique property inherent to the doubly scattering mechanism. Numerical simulation examples of complex-shaped or multiple targets are presented to demonstrate the distinct advantage of the proposed algorithm which creates more accurate images even for complicated objects or in noisy situations.
Yoshihiro NIWA Shouhei KIDERA Tetsuo KIRIMOTO
Ultra wideband radar is one of the most promising techniques for non-invasive imaging in a dielectric medium, which is suitable for both medical screening and non-destructive testing applications. A novel imaging method for such an application is proposed in this brief paper, which has been extended from the advanced range points migration method to a multi-static observation model with circular arrays. One notable feature of this method is that it is applicable to either arbitrary dielectric or internal object shapes, and it can also expand the reconstructible image region compared with that obtained using the mono-static model by employing received signals after penetrating various propagation paths in dielectric medium. Numerical results for the investigation of an elliptical object, surrounded by a random dielectric surface, show the remarkable advantages of the proposed method with respect to image expansion.
Ken AKUNE Shouhei KIDERA Tetsuo KIRIMOTO
Ultra-wide band (UWB) pulse radar with high range resolution and dielectric permeability is promising as an internal imaging technique for non-destructive testing or breast cancer detection. Various imaging algorithms for buried objects within a dielectric medium have been proposed, such as aperture synthesis, the time reversal approach and the space-time beamforming algorithm. However, these algorithms mostly require a priori knowledge of the dielectric medium boundary in image focusing, and often suffer from inadequate accuracy to identify the detailed structure of buried targets, such as an edge or specular surface owing to employing the waveform focusing scheme. To overcome these difficulties, this paper proposes an accurate and non-parametric (i.e. using an arbitrary shape without target modeling) imaging algorithm for targets buried in a homogeneous dielectric medium by advancing the RPM (Range Points Migration) algorithm to internal imaging issues, which has been demonstrated to provide an accurate image even for complex-shaped objects in free-space measurement. Numerical simulations, including those for two-dimensional (2-D) and three-dimensional (3-D) cases, verify that the proposed algorithm enhances the imaging accuracy by less than 1/10 of the wavelength and significantly reduces the computational cost by specifying boundary extraction compared with the conventional SAR-based algorithm.
Ken AKUNE Shouhei KIDERA Tetsuo KIRIMOTO
Ultra-wide band (UWB) pulse radar has high range resolution, and is thus applicable to imaging sensors for a household robot. To enhance the imaging region of UWB radar, especially for multiple objects with complex shapes, an imaging algorithm based on aperture synthesis for multiple scattered waves has been proposed. However, this algorithm has difficulty realizing in real-time processing because its computation time is long. To overcome this difficulty, this letter proposes a fast accurate algorithm for shadow region imaging by incorporating the Range Points Migration (RPM) algorithm. The results of the numerical simulation show that, while the proposed algorithm affects the performance of the shadow region imaging slightly, it does not cause significant accuracy degradation and significantly decreases the computation time by a factor of 100 compared to the conventional algorithm.
Shouhei KIDERA Tetsuo KIRIMOTO
The applicability in harsh optical environments, such as dark smog, or strong backlight of ultra-wide band (UWB) pulse radar has a definite advantage over optical ranging techniques. We have already proposed the extended Synthetic Aperture Radar (SAR) algorithm employing double scattered waves, which aimed at enhancing the reconstructible region of the target boundary including shadow region. However, it still suffers from the shadow area for the target that has a sharp inclination or deep concave boundary, because it assumes a mono-static model, whose real aperture size is, in general, small. To resolve this issue, this study proposes an extension algorithm of the double scattered SAR based on a multi-static configuration. While this extension is quite simple, the effectiveness of the proposed method is nontrivial with regard to the expansion of the imaging range. The results from numerical simulations verify that our method significantly enhances the visible range of the target surfaces without a priori knowledge of the target shapes or any preliminary observation of its surroundings.
UWB (Ultra Wide-Band) pulse radar is a promising candidate for surveillance systems designed to prevent crimes and terror-related activities. The high-speed SEABED (Shape Estimation Algorithm based on BST and Extraction of Directly scattered waves) imaging algorithm, is used in the application of UWB pulse radar in fields that require realtime operations. The SEABED algorithm assumes that omni-directional antennas are scanned to observe the scattered electric field in each location. However, for surveillance systems, antenna scanning is impractical because it restricts the setting places of the devices. In this paper, movement of a body is used to replace antenna scanning. The instantaneous velocity of any given motion is an unknown variable that changes as a function of time. A pair of antennas is used to analyze delay time to estimate the unknown motion. We propose a new algorithm to estimate the shape of a human body using data obtained from a human body passing stationary antennas.