The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

2521-2540hit(22683hit)

  • A Genetic Approach for Accelerating Communication Performance by Node Mapping

    Takashi YOKOTA  Kanemitsu OOTSU  Takeshi OHKAWA  

     
    LETTER-Architecture

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2971-2975

    This paper intends to reduce duration times in typical collective communications. We introduce logical addressing system apart from the physical one and, by rearranging the logical node addresses properly, we intend to reduce communication overheads so that ideal communication is performed. One of the key issues is rearrangement of the logical addressing system. We introduce genetic algorithm (GA) as meta-heuristic solution as well as the random search strategy. Our GA-based method achieves at most 2.50 times speedup in three-traffic-pattern cases.

  • A Block-Permutation-Based Encryption Scheme with Independent Processing of RGB Components

    Shoko IMAIZUMI  Hitoshi KIYA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/09/07
      Vol:
    E101-D No:12
      Page(s):
    3150-3157

    This paper proposes a block-permutation-based encryption (BPBE) scheme for the encryption-then-compression (ETC) system that enhances the color scrambling. A BPBE image can be obtained through four processes, positional scrambling, block rotation/flip, negative-positive transformation, and color component shuffling, after dividing the original image into multiple blocks. The proposed scheme scrambles the R, G, and B components independently in positional scrambling, block rotation/flip, and negative-positive transformation, by assigning different keys to each color component. The conventional scheme considers the compression efficiency using JPEG and JPEG 2000, which need a color conversion before the compression process by default. Therefore, the conventional scheme scrambles the color components identically in each process. In contrast, the proposed scheme takes into account the RGB-based compression, such as JPEG-LS, and thus can increase the extent of the scrambling. The resilience against jigsaw puzzle solver (JPS) can consequently be increased owing to the wider color distribution of the BPBE image. Additionally, the key space for resilience against brute-force attacks has also been expanded exponentially. Furthermore, the proposed scheme can maintain the JPEG-LS compression efficiency compared to the conventional scheme. We confirm the effectiveness of the proposed scheme by experiments and analyses.

  • Security Consideration for Deep Learning-Based Image Forensics

    Wei ZHAO  Pengpeng YANG  Rongrong NI  Yao ZHAO  Haorui WU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/08/24
      Vol:
    E101-D No:12
      Page(s):
    3263-3266

    Recently, image forensics community has paid attention to the research on the design of effective algorithms based on deep learning technique. And facts proved that combining the domain knowledge of image forensics and deep learning would achieve more robust and better performance than the traditional schemes. Instead of improving algorithm performance, in this paper, the safety of deep learning based methods in the field of image forensics is taken into account. To the best of our knowledge, this is the first work focusing on this topic. Specifically, we experimentally find that the method using deep learning would fail when adding the slight noise into the images (adversarial images). Furthermore, two kinds of strategies are proposed to enforce security of deep learning-based methods. Firstly, a penalty term to the loss function is added, which is the 2-norm of the gradient of the loss with respect to the input images, and then an novel training method is adopt to train the model by fusing the normal and adversarial images. Experimental results show that the proposed algorithm can achieve good performance even in the case of adversarial images and provide a security consideration for deep learning-based image forensics.

  • New Perfect Sequences from Helleseth-Gong Sequences

    Yong WANG  Yang YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2392-2396

    In this paper, for any given prime power q, using Helleseth-Gong sequences with ideal auto-correlation property, we propose a class of perfect sequences of length (qm-1)/(q-1). As an application, a subclass of constructed perfect sequences is used to design optimal and perfect difference systems of sets.

  • Two Classes of Linear Codes with Two or Three Weights

    Guangkui XU  Xiwang CAO  Jian GAO  Gaojun LUO  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:12
      Page(s):
    2366-2373

    Many linear codes with two or three weights have recently been constructed due to their applications in consumer electronics, communication, data storage system, secret sharing, authentication codes, association schemes, and strongly regular graphs. In this paper, two classes of p-ary linear codes with two or three weights are presented. The first class of linear codes with two or three weights is obtained from a certain non-quadratic function. The second class of linear codes with two weights is obtained from the images of a certain function on $mathbb{F}_{p^m}$. In some cases, the resulted linear codes are optimal in the sense that they meet the Griesmer bound.

  • Avoiding Performance Impacts by Re-Replication Workload Shifting in HDFS Based Cloud Storage

    Thanda SHWE  Masayoshi ARITSUGI  

     
    PAPER-Cloud Computing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2958-2967

    Data replication in cloud storage systems brings a lot of benefits, such as fault tolerance, data availability, data locality and load balancing both from reliability and performance perspectives. However, each time a datanode fails, data blocks stored on the failed datanode must be restored to maintain replication level. This may be a large burden for the system in which resources are highly utilized with users' application workloads. Although there have been many proposals for replication, the approach of re-replication has not been properly addressed yet. In this paper, we present a deferred re-replication algorithm to dynamically shift the re-replication workload based on current resource utilization status of the system. As workload pattern varies depending on the time of the day, simulation results from synthetic workload demonstrate a large opportunity for minimizing impacts on users' application workloads with the simple algorithm that adjusts re-replication based on current resource utilization. Our approach can reduce performance impacts on users' application workloads while ensuring the same reliability level as default HDFS can provide.

  • BareUnpack: Generic Unpacking on the Bare-Metal Operating System

    Binlin CHENG  Pengwei LI  

     
    PAPER-Information Network

      Pubricized:
    2018/09/12
      Vol:
    E101-D No:12
      Page(s):
    3083-3091

    Malware has become a growing threat as malware writers have learned that signature-based detectors can be easily evaded by packing the malware. Packing is a major challenge to malware analysis. The generic unpacking approach is the major solution to the threat of packed malware, and it is based on the intrinsic nature of the execution of packed executables. That is, the original code should be extracted in memory and get executed at run-time. The existing generic unpacking approaches need a simulated environment to monitor the executing of the packed executables. Unfortunately, the simulated environment is easily detected by the environment-sensitive packers. It makes the existing generic unpacking approaches easily evaded by the packer. In this paper, we propose a novel unpacking approach, BareUnpack, to monitor the execution of the packed executables on the bare-metal operating system, and then extracts the hidden code of the executable. BareUnpack does not need any simulated environment (debugger, emulator or VM), and it works on the bare-metal operating system directly. Our experimental results show that BareUnpack can resist the environment-sensitive packers, and improve the unpacking effectiveness, which outperforms other existing unpacking approaches.

  • Hardness Evaluation for Search LWE Problem Using Progressive BKZ Simulator

    Yuntao WANG  Yoshinori AONO  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:12
      Page(s):
    2162-2170

    The learning with errors (LWE) problem is considered as one of the most compelling candidates as the security base for the post-quantum cryptosystems. For the application of LWE based cryptographic schemes, the concrete parameters are necessary: the length n of secret vector, the moduli q and the deviation σ. In the middle of 2016, Germany TU Darmstadt group initiated the LWE Challenge in order to assess the hardness of LWE problems. There are several approaches to solve the LWE problem via reducing LWE to other lattice problems. Xu et al.'s group solved some LWE Challenge instances using Liu-Nguyen's adapted enumeration technique (reducing LWE to BDD problem) [23] and they published this result at ACNS 2017 [32]. In this paper, at first, we applied the progressive BKZ on the LWE challenge cases of σ/q=0.005 using Kannan's embedding technique. We can intuitively observe that the embedding technique is more efficient with the embedding factor M closer to 1. Then we will analyze the optimal number of samples m for a successful attack on LWE case with secret length of n. Thirdly based on this analysis, we show the practical cost estimations using the precise progressive BKZ simulator. Simultaneously, our experimental results show that for n ≥ 55 and the fixed σ/q=0.005, the embedding technique with progressive BKZ is more efficient than Xu et al.'s implementation of the enumeration algorithm in [32][14]. Moreover, by our parameter setting, we succeed in solving the LWE Challenge over (n,σ/q)=(70, 0.005) using 216.8 seconds (32.73 single core hours).

  • Leveraging Unannotated Texts for Scientific Relation Extraction

    Qin DAI  Naoya INOUE  Paul REISERT  Kentaro INUI  

     
    PAPER-Natural Language Processing

      Pubricized:
    2018/09/14
      Vol:
    E101-D No:12
      Page(s):
    3209-3217

    A tremendous amount of knowledge is present in the ever-growing scientific literature. In order to efficiently grasp such knowledge, various computational tasks are proposed that train machines to read and analyze scientific documents. One of these tasks, Scientific Relation Extraction, aims at automatically capturing scientific semantic relationships among entities in scientific documents. Conventionally, only a limited number of commonly used knowledge bases, such as Wikipedia, are used as a source of background knowledge for relation extraction. In this work, we hypothesize that unannotated scientific papers could also be utilized as a source of external background information for relation extraction. Based on our hypothesis, we propose a model that is capable of extracting background information from unannotated scientific papers. Our experiments on the RANIS corpus [1] prove the effectiveness of the proposed model on relation extraction from scientific articles.

  • Linear Complexity of Geometric Sequences Defined by Cyclotomic Classes and Balanced Binary Sequences Constructed by the Geometric Sequences

    Kazuyoshi TSUCHIYA  Chiaki OGAWA  Yasuyuki NOGAMI  Satoshi UEHARA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:12
      Page(s):
    2382-2391

    Pseudorandom number generators are required to generate pseudorandom numbers which have good statistical properties as well as unpredictability in cryptography. An m-sequence is a linear feedback shift register sequence with maximal period over a finite field. M-sequences have good statistical properties, however we must nonlinearize m-sequences for cryptographic purposes. A geometric sequence is a sequence given by applying a nonlinear feedforward function to an m-sequence. Nogami, Tada and Uehara proposed a geometric sequence whose nonlinear feedforward function is given by the Legendre symbol, and showed the period, periodic autocorrelation and linear complexity of the sequence. Furthermore, Nogami et al. proposed a generalization of the sequence, and showed the period and periodic autocorrelation. In this paper, we first investigate linear complexity of the geometric sequences. In the case that the Chan-Games formula which describes linear complexity of geometric sequences does not hold, we show the new formula by considering the sequence of complement numbers, Hasse derivative and cyclotomic classes. Under some conditions, we can ensure that the geometric sequences have a large linear complexity from the results on linear complexity of Sidel'nikov sequences. The geometric sequences have a long period and large linear complexity under some conditions, however they do not have the balance property. In order to construct sequences that have the balance property, we propose interleaved sequences of the geometric sequence and its complement. Furthermore, we show the periodic autocorrelation and linear complexity of the proposed sequences. The proposed sequences have the balance property, and have a large linear complexity if the geometric sequences have a large one.

  • Automatic Prevention of Buffer Overflow Vulnerability Using Candidate Code Generation

    Young-Su JANG  Jin-Young CHOI  

     
    PAPER-Software System

      Pubricized:
    2018/08/24
      Vol:
    E101-D No:12
      Page(s):
    3005-3018

    The security of a software program critically depends on the prevention of vulnerabilities in the source code; however, conventional computer programs lack the ability to identify vulnerable code in another program. Our research was aimed at developing a technique capable of generating substitution code for the detection of buffer overflow vulnerability in C/C++ programs. The technique automatically verifies and sanitizes code instrumentation by comparing the result of each candidate variable with that expected from the input data. Our results showed that statements containing buffer overflow vulnerabilities could be detected and prevented by using a substitution variable and by sanitizing code vulnerabilities based on the size of the variables. Thus, faults can be detected prior to execution of the statement, preventing malicious access. Our approach is particularly useful for enhancing software security monitoring, and for designing retrofitting techniques in applications.

  • Auto-Correlation Functions of Low-Density Chaotic Binary Sequences Generated by Bernoulli Map

    Akio TSUNEDA  

     
    LETTER-Coding theory and techniques

      Vol:
    E101-A No:12
      Page(s):
    2192-2193

    Low-density chaotic binary sequences generated by Bernoulli map are discussed in this paper. We theoretically evaluate auto-correlation functions of the low-density chaotic binary sequences based on chaos theory.

  • ATSMF: Automated Tiered Storage with Fast Memory and Slow Flash Storage to Improve Response Time with Concentrated Input-Output (IO) Workloads

    Kazuichi OE  Mitsuru SATO  Takeshi NANRI  

     
    PAPER-Memory Devices

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2889-2901

    The response times of solid state drives (SSDs) have decreased dramatically due to the growing use of non-volatile memory express (NVMe) devices. Such devices have response times of less than 100 micro seconds on average. The response times of all-flash-array systems have also decreased dramatically through the use of NVMe SSDs. However, there are applications, particularly virtual desktop infrastructure and in-memory database systems, that require storage systems with even shorter response times. Their workloads tend to contain many input-output (IO) concentrations, which are aggregations of IO accesses. They target narrow regions of the storage volume and can continue for up to an hour. These narrow regions occupy a few percent of the logical unit number capacity, are the target of most IO accesses, and appear at unpredictable logical block addresses. To drastically reduce the response times for such workloads, we developed an automated tiered storage system called “automated tiered storage with fast memory and slow flash storage” (ATSMF) in which the data in targeted regions are migrated between storage devices depending on the predicted remaining duration of the concentration. The assumed environment is a server with non-volatile memory and directly attached SSDs, with the user applications executed on the server as this reduces the average response time. Our system predicts the effect of migration by using the previously monitored values of the increase in response time during migration and the change in response time after migration. These values are consistent for each type of workload if the system is built using both non-volatile memory and SSDs. In particular, the system predicts the remaining duration of an IO concentration, calculates the expected response-time increase during migration and the expected response-time decrease after migration, and migrates the data in the targeted regions if the sum of response-time decrease after migration exceeds the sum of response-time increase during migration. Experimental results indicate that ATSMF is at least 20% faster than flash storage only and that its memory access ratio is more than 50%.

  • Hardware Based Parallel Phrase Matching Engine in Dictionary Compressor

    Qian DONG  

     
    LETTER-Architecture

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2968-2970

    A parallel phrase matching (PM) engine for dictionary compression is presented. Hardware based parallel chaining hash can eliminate erroneous PM results raised by hash collision; while newly-designed storage architecture holding PM results solved the data dependency issue; Thus, the average compression speed is increased by 53%.

  • A Kind of Disjoint Cyclic Perfect Mendelsohn Difference Family and Its Applications in Strictly Optimal FHSs

    Shanding XU  Xiwang CAO  Jian GAO  Chunming TANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2338-2343

    As an optimal combinatorial object, cyclic perfect Mendelsohn difference family (CPMDF) was introduced by Fuji-Hara and Miao to construct optimal optical orthogonal codes. In this paper, we propose a direct construction of disjoint CPMDFs from the Zeng-Cai-Tang-Yang cyclotomy. Compared with a recent work of Fan, Cai, and Tang, our construction doesn't need to depend on a cyclic difference matrix. Furthermore, strictly optimal frequency-hopping sequences (FHSs) are a kind of optimal FHSs which has optimal Hamming auto-correlation for any correlation window. As an application of our disjoint CPMDFs, we present more flexible combinatorial constructions of strictly optimal FHSs, which interpret the previous construction proposed by Cai, Zhou, Yang, and Tang.

  • Sparse Graph Codes for Channels with Synchronous Errors

    Ryohei GOTO  Kenta KASAI  

     
    PAPER-Coding theory and techniques

      Vol:
    E101-A No:12
      Page(s):
    2064-2071

    In this paper, we deal with coding for synchronous errors. We introduce a synchronously erroneous finite state Markov channel model whose SIR is computable. We apply density evolution analysis [1] and the extended version for FSMC [2] to the channel Numerical experiments demonstrated spatially-coupled codes approach the SIR of the channel.

  • A Generic Construction of Mutually Orthogonal Optimal Binary ZCZ Sequence Sets

    Yubo LI  Shuonan LI  Hongqian XUAN  Xiuping PENG  

     
    LETTER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2217-2220

    In this letter, a generic method to construct mutually orthogonal binary zero correlation zone (ZCZ) sequence sets from mutually orthogonal complementary sequence sets (MOCSSs) with certain properties is presented at first. Then MOCSSs satisfying conditions are generated from binary orthogonal matrices with order N×N, where N=p-1, p is a prime. As a result, mutually orthogonal binary ZCZ sequence sets with parameters (2N2,N,N+1)-ZCZ can be obtained, the number of ZCZ sets is N. Note that each single ZCZ sequence set is optimal with respect to the theoretical bound.

  • Empirical Evaluation and Optimization of Hardware-Trojan Classification for Gate-Level Netlists Based on Multi-Layer Neural Networks

    Kento HASEGAWA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER

      Vol:
    E101-A No:12
      Page(s):
    2320-2326

    Recently, it has been reported that malicious third-party IC vendors often insert hardware Trojans into their products. Especially in IC design step, malicious third-party vendors can easily insert hardware Trojans in their products and thus we have to detect them efficiently. In this paper, we propose a machine-learning-based hardware-Trojan detection method for gate-level netlists using multi-layer neural networks. First, we extract 11 Trojan-net feature values for each net in a netlist. After that, we classify the nets in an unknown netlist into a set of Trojan nets and that of normal nets using multi-layer neural networks. By experimentally optimizing the structure of multi-layer neural networks, we can obtain an average of 84.8% true positive rate and an average of 70.1% true negative rate while we can obtain 100% true positive rate in some of the benchmarks, which outperforms the existing methods in most of the cases.

  • Theoretical Analysis on Bit Error Rate of Visible-Light Variable N-Parallel Code-Shift-Keying

    Keisuke OSAWA  Hiromasa HABUCHI  Yusuke KOZAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2352-2358

    Lighting constrained visible-light communications are expected as indoor communications of next generation. In lighting constrained visible-light communications, lighting devices are used not only for illuminating rooms but also for optical wireless communications. For lighting constrained visible-light communications, we have been proposed a variable N-parallel code-shift-keying (VN-CSK) using a modified prime sequence code (MPSC). The VN-CSK system using MPSC has not only a suppression function for reducing co-channel interference from neighboring lighting devices, but also a function for keeping constant data transmission regardless of dimming control. In this paper, the bit error rate (BER) of the VN-CSK system using MPSC is derived under an indoor visible-light communication channel by theoretical analysis. Moreover, we evaluate the BER performance for the brightness level (dimming control stage).

  • Syntax-Based Context Representation for Statistical Machine Translation

    Kehai CHEN  Tiejun ZHAO  Muyun YANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2018/08/24
      Vol:
    E101-D No:12
      Page(s):
    3226-3237

    Learning semantic representation for translation context is beneficial to statistical machine translation (SMT). Previous efforts have focused on implicitly encoding syntactic and semantic knowledge in translation context by neural networks, which are weak in capturing explicit structural syntax information. In this paper, we propose a new neural network with a tree-based convolutional architecture to explicitly learn structural syntax information in translation context, thus improving translation prediction. Specifically, we first convert parallel sentences with source parse trees into syntax-based linear sequences based on a minimum syntax subtree algorithm, and then define a tree-based convolutional network over the linear sequences to learn syntax-based context representation and translation prediction jointly. To verify the effectiveness, the proposed model is integrated into phrase-based SMT. Experiments on large-scale Chinese-to-English and German-to-English translation tasks show that the proposed approach can achieve a substantial and significant improvement over several baseline systems.

2521-2540hit(22683hit)