The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

2621-2640hit(22683hit)

  • New Families of Quaternary Sequences of Period 2p with Low Autocorrelation

    Xiaofei SONG  Yanguo JIA  Xiumin SHEN  Yubo LI  Xiuping PENG  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:11
      Page(s):
    1964-1969

    In this letter, two new families of quaternary sequences with low four-level or five-level autocorrelation are constructed based on generalized cyclotomy over Z2p. These quaternary sequences are balanced and the maximal absolute value of the out-of-phase autocorrelation is 4.

  • Hierarchical Tensor Manifold Modeling for Multi-Group Analysis

    Hideaki ISHIBASHI  Masayoshi ERA  Tetsuo FURUKAWA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E101-A No:11
      Page(s):
    1745-1755

    The aim of this work is to develop a method for the simultaneous analysis of multiple groups and their members based on hierarchical tensor manifold modeling. The method is particularly designed to analyze multiple teams, such as sports teams and business teams. The proposed method represents members' data using a nonlinear manifold for each team, and then these manifolds are further modeled using another nonlinear manifold in the model space. For this purpose, the method estimates the role of each member in the team, and discovers correspondences between members that play similar roles in different teams. The proposed method was applied to basketball league data, and it demonstrated the ability of knowledge discovery from players' statistics. We also demonstrated that the method could be used as a general tool for multi-level multi-group analysis by applying it to marketing data.

  • Single Image Haze Removal Using Hazy Particle Maps

    Geun-Jun KIM  Seungmin LEE  Bongsoon KANG  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    1999-2002

    Hazes with various properties spread widely across flat areas with depth continuities and corner areas with depth discontinuities. Removing haze from a single hazy image is difficult due to its ill-posed nature. To solve this problem, this study proposes a modified hybrid median filter that performs a median filter to preserve the edges of flat areas and a hybrid median filter to preserve depth discontinuity corners. Recovered scene radiance, which is obtained by removing hazy particles, restores image visibility using adaptive nonlinear curves for dynamic range expansion. Using comparative studies and quantitative evaluations, this study shows that the proposed method achieves similar or better results than those of other state-of-the-art methods.

  • Experimental Evaluation of Maximum Achievable Efficiency for Multiple-Receiver Inductive Power Transfer Systems

    Reona SUGIYAMA  Quang-Thang DUONG  Minoru OKADA  

     
    PAPER-Analog Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1861-1868

    Optimal loads and maximum achievable efficiency for multiple-receiver inductive power transfer (IPT) system have been formulated by theoretical studies in literatures. This paper presents extended analysis on system behavior at optimal load condition and extensive S-parameter evaluation to validate the formulas. Our results confirm that at the optimal load condition, the system is in a resonance state; the impact of cross-coupling among receivers is completely mitigated; and the efficiency reaches its maximum expressed by an efficiency angle tangent, in an manner analogous to the well-known kQ-theory for single-receiver IPT. Our contributions do not lie in practical applications of multiple-receiver IPT but in establishing principles for design and benchmarking the system.

  • Theoretical Understanding of Some Conditional and Joint Biases in RC4 Stream Cipher

    Sonu JHA  Subhadeep BANIK  Takanori ISOBE  Toshihiro OHIGASHI  Santanu SARKAR  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:11
      Page(s):
    1869-1879

    In this paper we present proofs for the new biases in RC4 which were experimentally found and listed out (without theoretical justifications and proofs) in a paper by Vanhoef et al. in USENIX 2015. Their purpose was to exploit the vulnerabilities of RC4 in TLS using the set of new biases found by them. We also show (and prove) new results on couple of very strong biases residing in the joint distribution of three consecutive output bytes of the RC4 stream cipher. These biases provides completely new distinguisher for RC4 taking roughly O(224) samples to distinguish streams of RC4 from a uniformly random stream. We also provide a list of new results with proofs relating to some conditional biases in the keystreams of the RC4 stream cipher.

  • An Overview of Cyber Security for Connected Vehicles Open Access

    Junko TAKAHASHI  

     
    INVITED PAPER

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2561-2575

    The demand for and the scope of connected services have rapidly grown and developed in many industries such as electronic appliances, robotics, and industry automation. In the automotive field, including connected vehicles, different types of connected services have become available and they provide convenience and comfort with users while yielding new business opportunities. With the advent of connected vehicles, the threat of cyber attacks has become a serious issue and protection methods against these attacks are urgently needed to provide safe and secure connected services. From 2017, attack methods have become more sophisticated through different attack surfaces attached to navigation systems and telematics modules, and security requirements to circumvent such attacks have begun to be established. Individual threats have been addressed previously; however, there are few reports that provide an overview of cyber security related to connected vehicles. This paper gives our perspective on cyber security for connected vehicles based on a survey of recent studies related to vehicle security. To introduce these studies, the environment surrounding connected vehicles is classified into three categories: inside the vehicle, communications between the back-end systems and vehicles, and the back-end systems. In each category, this paper introduces recent trends in cyber attacks and the protection requirements that should be developed for connected services. We show that the overall security covering the three categories must be considered because the security of the vehicle is jeopardized even if one item in the categories is not covered. We believe that this paper will further contribute to development of all service systems related to connected vehicles including autonomous vehicles and to the investigation into cyber security against these attacks.

  • Fostering Real-Time Software Analysis by Leveraging Heterogeneous and Autonomous Software Repositories

    Chaman WIJESIRIWARDANA  Prasad WIMALARATNE  

     
    PAPER-Software Engineering

      Pubricized:
    2018/08/06
      Vol:
    E101-D No:11
      Page(s):
    2730-2743

    Mining software repositories allow software practitioners to improve the quality of software systems and to support maintenance based on historical data. Such data is scattered across autonomous and heterogeneous information sources, such as version control, bug tracking and build automation systems. Despite having many tools to track and measure the data originated from such repositories, software practitioners often suffer from a scarcity of the techniques necessary to dynamically leverage software repositories to fulfill their complex information needs. For example, answering a question such as “What is the number of commits between two successful builds?” requires tiresome manual inspection of multiple repositories. As a solution, this paper presents a conceptual framework and a proof of concept visual query interface to satisfy distinct software quality related information needs of software practitioners. The data originated from repositories is integrated and analyzed to perform systematic investigations, which helps to uncover hidden relationships between software quality and trends of software evolution. This approach has several significant benefits such as the ability to perform real-time analyses, the ability to combine data from various software repositories and generate queries dynamically. The framework evaluated with 31 subjects by using a series of questions categorized into three software evolution scenarios. The evaluation results evidently show that our framework surpasses the state of the art tools in terms of correctness, time and usability.

  • Design and Implementation of SDN-Based Proactive Firewall System in Collaboration with Domain Name Resolution

    Hiroya IKARASHI  Yong JIN  Nariyoshi YAMAI  Naoya KITAGAWA  Kiyohiko OKAYAMA  

     
    PAPER-Network Security

      Pubricized:
    2018/08/22
      Vol:
    E101-D No:11
      Page(s):
    2633-2643

    Security facilities such as firewall system and IDS/IPS (Intrusion Detection System/Intrusion Prevention System) have become fundamental solutions against cyber threats. With the rapid change of cyber attack tactics, detail investigations like DPI (Deep Packet Inspection) and SPI (Stateful Packet Inspection) for incoming traffic become necessary while they also cause the decrease of network throughput. In this paper, we propose an SDN (Software Defined Network) - based proactive firewall system in collaboration with domain name resolution to solve the problem. The system consists of two firewall units (lightweight and normal) and a proper one will be assigned for checking the client of incoming traffic by the collaboration of SDN controller and internal authoritative DNS server. The internal authoritative DNS server obtains the client IP address using EDNS (Extension Mechanisms for DNS) Client Subnet Option from the external DNS full resolver during the name resolution stage and notifies the client IP address to the SDN controller. By checking the client IP address on the whitelist and blacklist, the SDN controller assigns a proper firewall unit for investigating the incoming traffic from the client. Consequently, the incoming traffic from a trusted client will be directed to the lightweight firewall unit while from others to the normal firewall unit. As a result, the incoming traffic can be distributed properly to the firewall units and the congestion can be mitigated. We implemented a prototype system and evaluated its performance in a local experimental network. Based on the results, we confirmed that the prototype system presented expected features and acceptable performance when there was no flooding attack. We also confirmed that the prototype system showed better performance than conventional firewall system under ICMP flooding attack.

  • Secure Spatial Modulation Based on Dynamic Multi-Parameter WFRFT

    Qian CHENG  Jiang ZHU  Junshan LUO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/08
      Vol:
    E101-B No:11
      Page(s):
    2304-2312

    A novel secure spatial modulation (SM) scheme based on dynamic multi-parameter weighted-type fractional Fourier transform (WFRFT), abbreviated as SMW, is proposed. Each legitimate transmitter runs WFRFT on the spatially modulated super symbols before transmit antennas, the parameters of which are dynamically updated using the transmitting bits. Each legitimate receiver runs inverse WFRFT to demodulate the received signals, the parameters of which are also dynamically generated using the recovered bits with the same updating strategies as the transmitter. The dynamic update strategies of WFRFT parameters are designed. As a passive eavesdropper is ignorant of the initial WFRFT parameters and the dynamic update strategies, which are indicated by the transmitted bits, it cannot recover the original information, thereby guaranteeing the communication security between legitimate transmitter and receiver. Besides, we formulate the maximum likelihood (ML) detector and analyze the secrecy capacity and the upper bound of BER. Simulations demonstrate that the proposed SMW scheme can achieve a high level of secrecy capacity and maintain legitimate receiver's low BER performance while deteriorating the eavesdropper's BER.

  • Simultaneous Wireless Information and Power Transfer Solutions for Energy-Harvesting Fairness in Cognitive Multicast Systems

    Pham-Viet TUAN  Insoo KOO  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:11
      Page(s):
    1988-1992

    In this letter, we consider the harvested-energy fairness problem in cognitive multicast systems with simultaneous wireless information and power transfer. In the cognitive multicast system, a cognitive transmitter with multi-antenna sends the same information to cognitive users in the presence of licensed users, and cognitive users can decode information and harvest energy with a power-splitting structure. The harvested-energy fairness problem is formulated and solved by using two proposed algorithms, which are based on semidefinite relaxation with majorization-minimization method, and sequential parametric convex approximation with feasible point pursuit technique, respectively. Finally, the performances of the proposed solutions and baseline schemes are verified by simulation results.

  • Critical Nodes Identification of Power Grids Based on Network Efficiency

    WenJie KANG  PeiDong ZHU  JieXin ZHANG  JunYang ZHANG  

     
    PAPER-Information Network

      Pubricized:
    2018/07/27
      Vol:
    E101-D No:11
      Page(s):
    2762-2772

    Critical nodes identification is of great significance in protecting power grids. Network efficiency can be used as an evaluation index to identify the critical nodes and is an indicator to quantify how efficiently a network exchanges information and transmits energy. Since power grid is a heterogeneous network and can be decomposed into small functionally-independent grids, the concept of the Giant Component does not apply to power grids. In this paper, we first model the power grid as the directed graph and define the Giant Efficiency sub-Graph (GEsG). The GEsG is the functionally-independent unit of the network where electric energy can be transmitted from a generation node (i.e., power plants) to some demand nodes (i.e., transmission stations and distribution stations) via the shortest path. Secondly, we propose an algorithm to evaluate the importance of nodes by calculating their critical degree, results of which can be used to identify critical nodes in heterogeneous networks. Thirdly, we define node efficiency loss to verify the accuracy of critical nodes identification (CNI) algorithm and compare the results that GEsG and Giant Component are separately used as assessment criteria for computing the node efficiency loss. Experiments prove the accuracy and efficiency of our CNI algorithm and show that the GEsG can better reflect heterogeneous characteristics and power transmission of power grids than the Giant Component. Our investigation leads to a counterintuitive finding that the most important critical nodes may not be the generation nodes but some demand nodes.

  • A Low-Complexity and Fast Convergence Message Passing Receiver Based on Partial Codeword Transmission for SCMA Systems

    Xuewan ZHANG  Wenping GE  Xiong WU  Wenli DAI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/05/16
      Vol:
    E101-B No:11
      Page(s):
    2259-2266

    Sparse code multiple access (SCMA) based on the message passing algorithm (MPA) for multiuser detection is a competitive non-orthogonal multiple access technique for fifth-generation wireless communication networks Among the existing multiuser detection schemes for uplink (UP) SCMA systems, the serial MPA (S-MPA) scheme, where messages are updated sequentially, generally converges faster than the conventional MPA (C-MPA) scheme, where all messages are updated in a parallel manner. In this paper, the optimization of message scheduling in the S-MPA scheme is proposed. Firstly, some statistical results for the probability density function (PDF) of the received signal are obtained at various signal-to-noise ratios (SNR) by using the Monte Carlo method. Then, based on the non-orthogonal property of SCMA, the data mapping relationship between resource nodes and user nodes is comprehensively analyzed. A partial codeword transmission of S-MPA (PCTS-MPA) with threshold decision scheme of PDF is proposed and verified. Simulations show that the proposed PCTS-MPA not only reduces the complexity of MPA without changing the bit error ratio (BER), but also has a faster convergence than S-MPA, especially at high SNR values.

  • Secure and Fast Near-Field Acoustic Communication Using Acoustic and Vibrational Signals

    Saki NISHIHARA  Tadashi EBIHARA  Koichi MIZUTANI  Naoto WAKATSUKI  

     
    PAPER-Communication Theory and Signals, Digital Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1841-1848

    In this paper, we propose a secure near-field communication (NFC) for smartphones by combining acoustic and vibrational communication. In our hybrid system, a transmitter transmits an encrypted message and encryption key from a loudspeaker and vibration motor, respectively. While the sound emitted from the loudspeaker propagates through the air, the vibration emitted by the vibration motor propagates through the body of smartphones. Hence, only receivers touching the transmitter can receive both the encrypted message and the key, resulting in secure communication. We designed a software modulator and demodulator suitable for the vibrational communication by using return-to-zero (RZ) code. Then we established a hybrid communication system by combining acoustic and vibrational communication modems, and evaluated its performance in experiments. The results indicate that our hybrid system achieved a secure (among physically contacted devices) and fast (800kbps) NFC for smartphones.

  • Cube-Based Encryption-then-Compression System for Video Sequences

    Kosuke SHIMIZU  Taizo SUZUKI  Keisuke KAMEYAMA  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1815-1822

    We propose the cube-based perceptual encryption (C-PE), which consists of cube scrambling, cube rotation, cube negative/positive transformation, and cube color component shuffling, and describe its application to the encryption-then-compression (ETC) system of Motion JPEG (MJPEG). Especially, cube rotation replaces the blocks in the original frames with ones in not only the other frames but also the depth-wise cube sides (spatiotemporal sides) unlike conventional block-based perceptual encryption (B-PE). Since it makes intra-block observation more difficult and prevents unauthorized decryption from only a single frame, it is more robust than B-PE against attack methods without any decryption key. However, because the encrypted frames including the blocks from the spatiotemporal sides affect the MJPEG compression performance slightly, we also devise a version of C-PE with no spatiotemporal sides (NSS-C-PE) that hardly affects compression performance. C-PE makes the encrypted video sequence robust against the only single frame-based algorithmic brute force (ABF) attack with only 21 cubes. The experimental results show the compression efficiency and encryption robustness of the C-PE/NSS-C-PE-based ETC system. C-PE-based ETC system shows mixed results depending on videos, whereas NSS-C-PE-based ETC system shows that the BD-PSNR can be suppressed to about -0.03dB not depending on videos.

  • Optimization of the Window Function in an Adaptive Noise Canceller

    Yusuke MATSUBARA  Naohiro TODA  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1854-1860

    Adaptive noise cancellation using adaptive filters is a known method for removing noise that interferes with signal measurements. The adaptive noise canceller performs filtering based on the current situation through a windowing process. The shape of the window function determines the tracking performance of the adaptive noise canceller with respect to the fluctuation of the property of the unknown system that noise (reference signal) passes. However, the shape of the window function in the field of adaptive filtering has not yet been considered in detail. This study mathematically treats the effect of the window function on the adaptive noise canceller and proposes an optimization method for the window function in situations where offline processing can be performed, such as biomedical signal measurements. We also demonstrate the validity of the optimized window function through numerical experiments.

  • Non-Cooperative Detection Method of MIMO-LFM Signals with FRFT Based on Entropy of Slice

    Yifei LIU  Jun ZHU  Bin TANG  Qi ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1940-1943

    To improve detection performance for a reconnaissance receiver, which is designed to detect the non-cooperative MIMO-LFM radar signal under low SNR condition, this letter proposed a novel signal detection method. This method is based on Fractional Fourier Transform with entropy weight (FRFTE) and autocorrelation algorithm. In addition, the flow chart and feasibility of the proposed algorithm are analyzed. Finally, applying our method to Wigner Hough Transform (WHT), we demonstrate the superiority of this method by simulation results.

  • Deterministic Constructions of Compressed Sensing Matrices Based on Affine Singular Linear Space over Finite Fields

    Gang WANG  Min-Yao NIU  Jian GAO  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:11
      Page(s):
    1957-1963

    Compressed sensing theory provides a new approach to acquire data as a sampling technique and makes sure that a sparse signal can be reconstructed from few measurements. The construction of compressed sensing matrices is a main problem in compressed sensing theory (CS). In this paper, the deterministic constructions of compressed sensing matrices based on affine singular linear space over finite fields are presented and a comparison is made with the compressed sensing matrices constructed by DeVore based on polynomials over finite fields. By choosing appropriate parameters, our sparse compressed sensing matrices are superior to the DeVore's matrices. Then we use a new formulation of support recovery to recover the support sets of signals with sparsity no more than k on account of binary compressed sensing matrices satisfying disjunct and inclusive properties.

  • Secure Communications for Primary Users in Cognitive Radio Networks with Collusive Eavesdroppers

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:11
      Page(s):
    1970-1974

    This letter studies physical-layer security in a cognitive radio (CR) network, where a primary user (PU) is eavesdropped by multiple collusive eavesdroppers. Under the PU secrecy outage constraint to protect the PU, the secondary users (SUs) are assumed to be allowed to transmit. The problem of joint SU scheduling and power control to maximize the SU ergodic transmission rate is investigated for both the scenarios of perfect and imperfect channel state information (CSI). It is shown that, although collusive eavesdroppers degrade the PU performance compared to non-collusive eavesdroppers, the SU performance is actually improved when the number of eavesdroppers is large. It is also shown that our proposed scheme with imperfect CSI can guarantee that the PU performance is unaffected by imperfect CSI.

  • Dynamic Channel Assignment with Consideration of Interference and Fairness for Dense Small-Cell Networks

    Se-Jin KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:11
      Page(s):
    1984-1987

    This letter proposes a novel dynamic channel assignment (DCA) scheme with consideration of interference and fairness for the downlink of dense small-cell networks based on orthogonal frequency division multiple access-frequency division duplex. In the proposed scheme, a small-cell gateway fairly assigns subchannels to the small-cell user equipment (SUE) according to the co-tier interference from neighboring small-cell access points. From the simulation results, it is shown that the proposed DCA scheme outperforms other DCA schemes in terms of the fairness of each SUE capacity.

  • A Novel Supervised Bimodal Emotion Recognition Approach Based on Facial Expression and Body Gesture

    Jingjie YAN  Guanming LU  Xiaodong BAI  Haibo LI  Ning SUN  Ruiyu LIANG  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    2003-2006

    In this letter, we propose a supervised bimodal emotion recognition approach based on two important human emotion modalities including facial expression and body gesture. A effectively supervised feature fusion algorithms named supervised multiset canonical correlation analysis (SMCCA) is presented to established the linear connection between three sets of matrices, which contain the feature matrix of two modalities and their concurrent category matrix. The test results in the bimodal emotion recognition of the FABO database show that the SMCCA algorithm can get better or considerable efficiency than unsupervised feature fusion algorithm covering canonical correlation analysis (CCA), sparse canonical correlation analysis (SCCA), multiset canonical correlation analysis (MCCA) and so on.

2621-2640hit(22683hit)