The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

2541-2560hit(22683hit)

  • Parametric Models for Mutual Kernel Matrix Completion

    Rachelle RIVERO  Tsuyoshi KATO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/09/26
      Vol:
    E101-D No:12
      Page(s):
    2976-2983

    Recent studies utilize multiple kernel learning to deal with incomplete-data problem. In this study, we introduce new methods that do not only complete multiple incomplete kernel matrices simultaneously, but also allow control of the flexibility of the model by parameterizing the model matrix. By imposing restrictions on the model covariance, overfitting of the data is avoided. A limitation of kernel matrix estimations done via optimization of an objective function is that the positive definiteness of the result is not guaranteed. In view of this limitation, our proposed methods employ the LogDet divergence, which ensures the positive definiteness of the resulting inferred kernel matrix. We empirically show that our proposed restricted covariance models, employed with LogDet divergence, yield significant improvements in the generalization performance of previous completion methods.

  • Block-Punctured Binary Simplex Codes for Local and Parallel Repair in Distributed Storage Systems

    Jung-Hyun KIM  Min Kyu SONG  Hong-Yeop SONG  

     
    PAPER-Information Theory

      Vol:
    E101-A No:12
      Page(s):
    2374-2381

    In this paper, we investigate how to obtain binary locally repairable codes (LRCs) with good locality and availability from binary Simplex codes. We first propose a Combination code having the generator matrix with all the columns of positive weights less than or equal to a given value. Such a code can be also obtained by puncturing all the columns of weights larger than a given value from a binary Simplex Code. We call by block-puncturing such puncturing method. Furthermore, we suggest a heuristic puncturing method, called subblock-puncturing, that punctures a few more columns of the largest weight from the Combination code. We determine the minimum distance, locality, availability, joint information locality, joint information availability of Combination codes in closed-form. We also demonstrate the optimality of the proposed codes with certain choices of parameters in terms of some well-known bounds.

  • Real-Time and Energy-Efficient Face Detection on CPU-GPU Heterogeneous Embedded Platforms

    Chanyoung OH  Saehanseul YI  Youngmin YI  

     
    PAPER-Real-time Systems

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2878-2888

    As energy efficiency has become a major design constraint or objective, heterogeneous manycore architectures have emerged as mainstream target platforms not only in server systems but also in embedded systems. Manycore accelerators such as GPUs are getting also popular in embedded domains, as well as the heterogeneous CPU cores. However, as the number of cores in an embedded GPU is far less than that of a server GPU, it is important to utilize both heterogeneous multi-core CPUs and GPUs to achieve the desired throughput with the minimal energy consumption. In this paper, we present a case study of mapping LBP-based face detection onto a recent CPU-GPU heterogeneous embedded platform, which exploits both task parallelism and data parallelism to achieve maximal energy efficiency with a real-time constraint. We first present the parallelization technique of each task for the GPU execution, then we propose performance and energy models for both task-parallel and data-parallel executions on heterogeneous processors, which are used in design space exploration for the optimal mapping. The design space is huge since not only processor heterogeneity such as CPU-GPU and big.LITTLE, but also various data partitioning ratios for the data-parallel execution on these heterogeneous processors are considered. In our case study of LBP face detection on Exynos 5422, the estimation error of the proposed performance and energy models were on average -2.19% and -3.67% respectively. By systematically finding the optimal mappings with the proposed models, we could achieve 28.6% less energy consumption compared to the manual mapping, while still meeting the real-time constraint.

  • A Property of a Class of Gaussian Periods and Its Application

    Yuhua SUN  Qiang WANG  Qiuyan WANG  Tongjiang YAN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2344-2351

    In the past two decades, many generalized cyclotomic sequences have been constructed and they have been used in cryptography and communication systems for their high linear complexity and low autocorrelation. But there are a few of papers focusing on the 2-adic complexities of such sequences. In this paper, we first give a property of a class of Gaussian periods based on Whiteman's generalized cyclotomic classes of order 4. Then, as an application of this property, we study the 2-adic complexity of a class of Whiteman's generalized cyclotomic sequences constructed from two distinct primes p and q. We prove that the 2-adic complexity of this class of sequences of period pq is lower bounded by pq-p-q-1. This lower bound is at least greater than one half of its period and thus it shows that this class of sequences can resist against the rational approximation algorithm (RAA) attack.

  • Modified Mutually ZCZ Set of Optical Orthogonal Sequences

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:12
      Page(s):
    2415-2418

    In this paper, we propose a generation method of new mutually zero-correlation zone set of optical orthogonal sequences (MZCZ-OOS) consisting of binary and bi-phase sequence pairs based on the optical zero-correlation zone (ZCZ) sequence set. The MZCZ-OOS is composed of several small orthogonal sequence sets. The sequences that belong to same subsets are orthogonal, and there is a ZCZ between the sequence that belong to different subsets. The set is suitable for the M-ary quasi-synchronous optical code-division multiple access (M-ary/QS-OCDMA) system. The product of set size S and family size M of proposed MMZCZ-OOS is more than the upper bound of optical ZCZ sequence set, and is fewer than the that of optical orthogonal sequence set.

  • A Robust Algorithm for Deadline Constrained Scheduling in IaaS Cloud Environment

    Bilkisu Larai MUHAMMAD-BELLO  Masayoshi ARITSUGI  

     
    PAPER-Cloud Computing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2942-2957

    The Infrastructure as a Service (IaaS) Clouds are emerging as a promising platform for the execution of resource demanding and computation intensive workflow applications. Scheduling the execution of scientific applications expressed as workflows on IaaS Clouds involves many uncertainties due to the variable and unpredictable performance of Cloud resources. These uncertainties are modeled by probability distribution functions in past researches or totally ignored in some cases. In this paper, we propose a novel robust deadline constrained workflow scheduling algorithm which handles the uncertainties in scheduling workflows in the IaaS Cloud environment. Our proposal is a static scheduling algorithm aimed at addressing the uncertainties related to: the estimation of task execution times; and, the delay in provisioning computational Cloud resources. The workflow scheduling problem was considered as a cost-optimized, deadline-constrained optimization problem. Our uncertainty handling strategy was based on the consideration of knowledge of the interval of uncertainty, which we used to modeling the execution times rather than using a known probability distribution function or precise estimations which are known to be very sensitive to variations. Experimental evaluations using CloudSim with synthetic workflows of various sizes show that our proposal is robust to fluctuations in estimates of task runtimes and is able to produce high quality schedules that have deadline guarantees with minimal penalty cost trade-off depending on the length of the interval of uncertainty. Scheduling solutions for varying degrees of uncertainty resisted against deadline violations at runtime as against the static IC-PCP algorithm which could not guarantee deadline constraints in the face of uncertainty.

  • Visualization of Inter-Module Dataflow through Global Variables for Source Code Review

    Naoto ISHIDA  Takashi ISHIO  Yuta NAKAMURA  Shinji KAWAGUCHI  Tetsuya KANDA  Katsuro INOUE  

     
    LETTER-Software System

      Pubricized:
    2018/09/26
      Vol:
    E101-D No:12
      Page(s):
    3238-3241

    Defects in spacecraft software may result in loss of life and serious economic damage. To avoid such consequences, the software development process incorporates code review activity. A code review conducted by a third-party organization independently of a software development team can effectively identify defects in software. However, such review activity is difficult for third-party reviewers, because they need to understand the entire structure of the code within a limited time and without prior knowledge. In this study, we propose a tool to visualize inter-module dataflow for source code of spacecraft software systems. To evaluate the method, an autonomous rover control program was reviewed using this visualization. While the tool does not decreases the time required for a code review, the reviewers considered the visualization to be effective for reviewing code.

  • A Lower Bound on the Second-Order Nonlinearity of the Generalized Maiorana-McFarland Boolean Functions

    Qi GAO  Deng TANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:12
      Page(s):
    2397-2401

    Boolean functions used in stream ciphers and block ciphers should have high second-order nonlinearity to resist several known attacks and some potential attacks which may exist but are not yet efficient and might be improved in the future. The second-order nonlinearity of Boolean functions also plays an important role in coding theory, since its maximal value equals the covering radius of the second-order Reed-Muller code. But it is an extremely hard task to calculate and even to bound the second-order nonlinearity of Boolean functions. In this paper, we present a lower bound on the second-order nonlinearity of the generalized Maiorana-McFarland Boolean functions. As applications of our bound, we provide more simpler and direct proofs for two known lower bounds on the second-order nonlinearity of functions in the class of Maiorana-McFarland bent functions. We also derive a lower bound on the second-order nonlinearity of the functions which were conjectured bent by Canteaut and whose bentness was proved by Leander, by further employing our bound.

  • A Multilevel Indexing Method for Approximate Geospatial Aggregation Analysis

    Luo CHEN  Ye WU  Wei XIONG  Ning JING  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2018/09/26
      Vol:
    E101-D No:12
      Page(s):
    3242-3245

    In terms of spatial online aggregation, traditional stand-alone serial methods gradually become limited. Although parallel computing is widely studied nowadays, there scarcely has research conducted on the index-based parallel online aggregation methods, specifically for spatial data. In this letter, a parallel multilevel indexing method is proposed to accelerate spatial online aggregation analyses, which contains two steps. In the first step, a parallel aR tree index is built to accelerate aggregate query locally. In the second step, a multilevel sampling data pyramid structure is built based on the parallel aR tree index, which contribute to the concurrent returned query results with certain confidence degree. Experimental and analytical results verify that the methods are capable of handling billion-scale data.

  • Event De-Noising Convolutional Neural Network for Detecting Malicious URL Sequences from Proxy Logs

    Toshiki SHIBAHARA  Kohei YAMANISHI  Yuta TAKATA  Daiki CHIBA  Taiga HOKAGUCHI  Mitsuaki AKIYAMA  Takeshi YAGI  Yuichi OHSITA  Masayuki MURATA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:12
      Page(s):
    2149-2161

    The number of infected hosts on enterprise networks has been increased by drive-by download attacks. In these attacks, users of compromised popular websites are redirected toward websites that exploit vulnerabilities of a browser and its plugins. To prevent damage, detection of infected hosts on the basis of proxy logs rather than blacklist-based filtering has started to be researched. This is because blacklists have become difficult to create due to the short lifetime of malicious domains and concealment of exploit code. To detect accesses to malicious websites from proxy logs, we propose a system for detecting malicious URL sequences on the basis of three key ideas: focusing on sequences of URLs that include artifacts of malicious redirections, designing new features related to software other than browsers, and generating new training data with data augmentation. To find an effective approach for classifying URL sequences, we compared three approaches: an individual-based approach, a convolutional neural network (CNN), and our new event de-noising CNN (EDCNN). Our EDCNN reduces the negative effects of benign URLs redirected from compromised websites included in malicious URL sequences. Evaluation results show that only our EDCNN with proposed features and data augmentation achieved a practical classification performance: a true positive rate of 99.1%, and a false positive rate of 3.4%.

  • Security Evaluation for Block Scrambling-Based Image Encryption Including JPEG Distortion against Jigsaw Puzzle Solver Attacks

    Tatsuya CHUMAN  Hitoshi KIYA  

     
    LETTER-Image

      Vol:
    E101-A No:12
      Page(s):
    2405-2408

    Encryption-then-Compression (EtC) systems have been considered for the user-controllable privacy protection of social media like Twitter. The aim of this paper is to evaluate the security of block scrambling-based encryption schemes, which have been proposed to construct EtC systems. Even though this scheme has enough key spaces against brute-force attacks, each block in encrypted images has almost the same correlation as that of original images. Therefore, it is required to consider the security from different viewpoints from number theory-based encryption methods with provable security such as RSA and AES. In this paper, we evaluate the security of encrypted images including JPEG distortion by using automatic jigsaw puzzle solvers.

  • Evaluating “Health Status” for DNS Resolvers

    Keyu LU  Zhaoxin ZHANG  

     
    PAPER-Internet

      Pubricized:
    2018/06/22
      Vol:
    E101-B No:12
      Page(s):
    2409-2424

    The Domain Name System (DNS) maps domain names to IP addresses. It is an important infrastructure in the Internet. Recently, DNS has experienced various security threats. DNS resolvers experience the security threats most frequently, since they interact with clients and they are the largest group of domain name servers. In order to eliminate security threats against DNS resolvers, it is essential to improve their “health status”. Since DNS resolvers' owners are not clear which DNS resolvers should be improved and how to improve “health status”, the evaluation of “health status” for DNS resolvers has become vital. In this paper, we emphasize five indicators describing “health status” for DNS resolvers, including security, integrity, availability, speed and stability. We also present nine metrics measuring the indicators. Based on the measurement of the metrics, we present a “health status” evaluation method with factor analysis. To validate our method, we measured and evaluated more than 30,000 DNS resolvers in China and Japan. The results showed that the proposed “health status” evaluation method could describe “health status” well. We also introduce instructions for evaluating a small number of DNS resolvers. And we discuss DNSSEC and its effects on resolution speed. At last, we make suggestions for inspecting and improving “health status” of DNS resolvers.

  • A Chaotic Artificial Bee Colony Algorithm Based on Lévy Search

    Shijie LIN  Chen DONG  Zhiqiang WANG  Wenzhong GUO  Zhenyi CHEN  Yin YE  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E101-A No:12
      Page(s):
    2472-2476

    A Lévy search strategy based chaotic artificial bee colony algorithm (LABC) is proposed in this paper. The chaotic sequence, global optimal mechanism and Lévy flight mechanism were introduced respectively into the initialization, the employed bee search and the onlooker bee search. The experiments show that the proposed algorithm performed better in convergence speed, global search ability and optimization accuracy than other improved ABC.

  • A Unified Approach to Error Exponents for Multiterminal Source Coding Systems

    Shigeaki KUZUOKA  

     
    PAPER-Shannon theory

      Vol:
    E101-A No:12
      Page(s):
    2082-2090

    Two kinds of problems - multiterminal hypothesis testing and one-to-many lossy source coding - are investigated in a unified way. It is demonstrated that a simple key idea, which is developed by Iriyama for one-to-one source coding systems, can be applied to multiterminal source coding systems. In particular, general bounds on the error exponents for multiterminal hypothesis testing and one-to-many lossy source coding are given.

  • New Context-Adaptive Arithmetic Coding Scheme for Lossless Bit Rate Reduction of Parametric Stereo in Enhanced aacPlus

    Hee-Suk PANG  Jun-seok LIM  Hyun-Young JIN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    3258-3262

    We propose a new context-adaptive arithmetic coding (CAAC) scheme for lossless bit rate reduction of parametric stereo (PS) in enhanced aacPlus. Based on the probability analysis of stereo parameters indexes in PS, we propose a stereo band-dependent CAAC scheme for PS. We also propose a new coding structure of the scheme which is simple but effective. The proposed scheme has normal and memory-reduced versions, which are superior to the original and conventional schemes and guarantees significant bit rate reduction of PS. The proposed scheme can be an alternative to the original PS coding scheme at low bit rate, where coding efficiency is very important.

  • Design and Experiment of Via-Less and Small-Radiation Waveguide to Microstrip Line Transitions for Millimeter Wave Radar Modules

    Takashi MARUYAMA  Shigeo UDAGAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/06/04
      Vol:
    E101-B No:12
      Page(s):
    2425-2434

    We propose waveguide to microstrip line transitions for automotive millimeter wave radar modules. The transitions perpendicularly connect one waveguide and one or two microstrip lines. The configuration is simple because it consists of a waveguide and a dielectric substrate with copper foils. Additionally the transitions do not need via holes on the substrate. It leads to lower costs and improved reliability. We have already proposed a via-less transition by using multi-stage impedance transformers. The impedance transformers are used for suppressing undesirable radiation from the transition as well as impedance matching. In this paper, we propose a new transition with the microstrip lines on the long axis of the waveguide while most transitions place the microstrip lines on the minor axis (electric field direction) of the waveguide. Though our transition uses bend structures of microstrip lines, which basically cause radiation, our optimized configuration can keep small radiation. We also design a transition with a single microstrip line. The proposed transition with 2 microstrip lines can be modified to the 1 microstrip line version with minimum radiation loss. Electromagnetic simulations confirm the small radiation levels expected. Additionally we fabricate the transitions with back to back structure and determine the transmission and radiation performance. We also fabricates the transition for a patch array antenna. We confirm that the undesirable radiation from the proposed transition is small and the radiation pattern of the array antenna is not worsen by the transition.

  • Currency Preserving Query: Selecting the Newest Values from Multiple Tables

    Mohan LI  Yanbin SUN  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3059-3072

    In many applications, tables are distributively stored in different data sources, but the frequency of updates on each data source is different. Some techniques have been proposed to effectively express the temporal orders between different values, and the most current, i.e. up-to-date, value of a given data item can be easily picked up according to the temporal orders. However, the currency of the data items in the same table may be different. That is, when a user asks for a table D, it cannot be ensured that all the most current values of the data items in D are stored in a single table. Since different data sources may have overlaps, we can construct a conjunctive query on multiple tables to get all the required current values. In this paper, we formalize the conjunctive query as currency preserving query, and study how to generate the minimized currency preserving query to reduce the cost of visiting different data sources. First, a graph model is proposed to represent the distributed tables and their relationships. Based on the model, we prove that a currency preserving query is equivalent to a terminal tree in the graph, and give an algorithm to generate a query from a terminal tree. After that, we study the problem of finding minimized currency preserving query. The problem is proved to be NP-hard, and some heuristics strategies are provided to solve the problem. Finally, we conduct experiments on both synthetic and real data sets to verify the effectiveness and efficiency of the proposed techniques.

  • Local Feature Reliability Measure Consistent with Match Conditions for Mobile Visual Search

    Kohei MATSUZAKI  Kazuyuki TASAKA  Hiromasa YANAGIHARA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/09/12
      Vol:
    E101-D No:12
      Page(s):
    3170-3180

    We propose a feature design method for a mobile visual search based on binary features and a bag-of-visual words framework. In mobile visual search, detection error and quantization error are unavoidable due to viewpoint changes and cause performance degradation. Typical approaches to visual search extract features from a single view of reference images, though such features are insufficient to manage detection and quantization errors. In this paper, we extract features from multiview synthetic images. These features are selected according to our novel reliability measure which enables robust recognition against various viewpoint changes. We regard feature selection as a maximum coverage problem. That is, we find a finite set of features maximizing an objective function under certain constraints. As this problem is NP-hard and thus computationally infeasible, we explore approximate solutions based on a greedy algorithm. For this purpose, we propose novel constraint functions which are designed to be consistent with the match conditions in the visual search method. Experiments show that the proposed method improves retrieval accuracy by 12.7 percentage points without increasing the database size or changing the search procedure. In other words, the proposed method enables more accurate search without adversely affecting the database size, computational cost, and memory requirement.

  • A Verification Framework for Assembly Programs Under Relaxed Memory Model Using SMT Solver

    Pattaravut MALEEHUAN  Yuki CHIBA  Toshiaki AOKI  

     
    PAPER-Software System

      Pubricized:
    2018/09/12
      Vol:
    E101-D No:12
      Page(s):
    3038-3058

    In multiprocessors, memory models are introduced to describe the executions of programs among processors. Relaxed memory models, which relax the order of executions, are used in the most of the modern processors, such as ARM and POWER. Due to a relaxed memory model could change the program semantics, the executions of the programs might not be the same as our expectation that should preserve the program correctness. In addition to relaxed memory models, the way to execute an instruction is described by an instruction semantics, which varies among processor architectures. Dealing with instruction semantics among a variety of assembly programs is a challenge for program verification. Thus, this paper proposes a way to verify a variety of assembly programs that are executed under a relaxed memory model. The variety of assembly programs can be abstracted as the way to execute the programs by introducing an operation structure. Besides, there are existing frameworks for modeling relaxed memory models, which can realize program executions to be verified with a program property. Our work adopts an SMT solver to automatically reveal the program executions under a memory model and verify whether the executions violate the program property or not. If there is any execution from the solver, the program correctness is not preserved under the relaxed memory model. To verify programs, an experimental tool was developed to encode the given programs for a memory model into a first-order formula that violates the program correctness. The tool adopts a modeling framework to encode the programs into a formula for the SMT solver. The solver then automatically finds a valuation that satisfies the formula. In our experiments, two encoding methods were implemented based on two modeling frameworks. The valuations resulted by the solver can be considered as the bugs occurring in the original programs.

  • In-Vehicle Voice Interface with Improved Utterance Classification Accuracy Using Off-the-Shelf Cloud Speech Recognizer

    Takeshi HOMMA  Yasunari OBUCHI  Kazuaki SHIMA  Rintaro IKESHITA  Hiroaki KOKUBO  Takuya MATSUMOTO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3123-3137

    For voice-enabled car navigation systems that use a multi-purpose cloud speech recognition service (cloud ASR), utterance classification that is robust against speech recognition errors is needed to realize a user-friendly voice interface. The purpose of this study is to improve the accuracy of utterance classification for voice-enabled car navigation systems when inputs to a classifier are error-prone speech recognition results obtained from a cloud ASR. The role of utterance classification is to predict which car navigation function a user wants to execute from a spontaneous utterance. A cloud ASR causes speech recognition errors due to the noises that occur when traveling in a car, and the errors degrade the accuracy of utterance classification. There are many methods for reducing the number of speech recognition errors by modifying the inside of a speech recognizer. However, application developers cannot apply these methods to cloud ASRs because they cannot customize the ASRs. In this paper, we propose a system for improving the accuracy of utterance classification by modifying both speech-signal inputs to a cloud ASR and recognized-sentence outputs from an ASR. First, our system performs speech enhancement on a user's utterance and then sends both enhanced and non-enhanced speech signals to a cloud ASR. Speech recognition results from both speech signals are merged to reduce the number of recognition errors. Second, to reduce that of utterance classification errors, we propose a data augmentation method, which we call “optimal doping,” where not only accurate transcriptions but also error-prone recognized sentences are added to training data. An evaluation with real user utterances spoken to car navigation products showed that our system reduces the number of utterance classification errors by 54% from a baseline condition. Finally, we propose a semi-automatic upgrading approach for classifiers to benefit from the improved performance of cloud ASRs.

2541-2560hit(22683hit)