The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] appliance(9hit)

1-9hit
  • Thermal-Comfort Aware Online Co-Scheduling Framework for HVAC, Battery Systems, and Appliances in Smart Buildings

    Daichi WATARI  Ittetsu TANIGUCHI  Francky CATTHOOR  Charalampos MARANTOS  Kostas SIOZIOS  Elham SHIRAZI  Dimitrios SOUDRIS  Takao ONOYE  

     
    INVITED PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    698-706

    Energy management in buildings is vital for reducing electricity costs and maximizing the comfort of occupants. Excess solar generation can be used by combining a battery storage system and a heating, ventilation, and air-conditioning (HVAC) system so that occupants feel comfortable. Despite several studies on the scheduling of appliances, batteries, and HVAC, comprehensive and time scalable approaches are required that integrate such predictive information as renewable generation and thermal comfort. In this paper, we propose an thermal-comfort aware online co-scheduling framework that incorporates optimal energy scheduling and a prediction model of PV generation and thermal comfort with the model predictive control (MPC) approach. We introduce a photovoltaic (PV) energy nowcasting and thermal-comfort-estimation model that provides useful information for optimization. The energy management problem is formulated as three coordinated optimization problems that cover fast and slow time-scales by considering predicted information. This approach reduces the time complexity without a significant negative impact on the result's global nature and its quality. Experimental results show that our proposed framework achieves optimal energy management that takes into account the trade-off between electricity expenses and thermal comfort. Our sensitivity analysis indicates that introducing a battery significantly improves the trade-off relationship.

  • A Business Service Model of Smart Home Appliances Participating in the Peak Shaving and Valley Filling Based on Cloud Platform

    Mingrui ZHU  Yangjian JI  Wenjun JU  Xinjian GU  Chao LIU  Zhifang XU  

     
    PAPER

      Pubricized:
    2021/04/22
      Vol:
    E104-D No:8
      Page(s):
    1185-1194

    With the development of power market demand response capability, load aggregators play a more important role in the coordination between power grid and users. They have a wealth of user side business data resources related to user demand, load management and equipment operation. By building a business model of business data resource utilization and innovating the content and mode of intelligent power service, it can guide the friendly interaction between power supply, power grid and load, effectively improve the flexibility of power grid regulation, speed up demand response and refine load management. In view of the current situation of insufficient utilization of business resources, low user participation and imperfect business model, this paper analyzes the process of home appliance enterprises participating in peak shaving and valley filling (PSVF) as load aggregators, and expounds the relationship between the participants in the power market; a business service model of smart home appliance participating in PSVF based on cloud platform is put forward; the market value created by home appliance business resources for each participant under the joint action of market-oriented means, information technology and power consumption technology is discussed, and typical business scenarios are listed; taking Haier business resource analysis as an example, the feasibility of the proposed business model in innovating the content and value realization of intelligent power consumption services is proved.

  • Fundamental Characteristics of Arc Extinction at DC Low Current Interruption with High Voltage (<500V)

    Koichiro SAWA  Masatoshi TSURUOKA  Makito MORII  

     
    PAPER

      Vol:
    E99-C No:9
      Page(s):
    1016-1022

    Various DC power supply systems such as photovoltaic power generation, fuel cell and others have been gradually spreading, so that DC power distribution systems are expected as one of energy-saving technologies at houses and business-related buildings as well as data centers and factories. Under such circumstances switches for electric appliances are requested to interrupt DC current safely in DC power systems (DC 300-400V). It is well-known that DC current is much more difficult to be interrupted than AC current with current-zero. In this paper a model switch is developed and fundamental characteristics of DC current interruption in a resistive circuit is experimentally and theoretically examined. Consequently arc duration is found to be approximately a function of interrupted power rather than source voltage and circuit current. In addition arc length at its extinction is obtained by the observation of a high-speed camera. Then the arc length is found to be decided only by interrupted power like the gap length, independent of separation velocity. From these results it can be made clear that the arc form becomes arc-shaped at its extinction when the interrupted power is larger than about 500W. In addition the effect of magnetic blow-out on arc extinction is examined.

  • Magnetic Field Measurement for Human Exposure Assessment near Wireless Power Transfer Systems in Kilohertz and Megahertz Bands

    Satoshi ISHIHARA  Teruo ONISHI  Akimasa HIRATA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E98-B No:12
      Page(s):
    2470-2476

    A method for measuring the magnetic field strength for human exposure assessment closer than 20cm to wireless power transfer (WPT) systems for information household appliances is investigated based on numerical simulations and measurements at 100kHz and 6.78MHz. Four types of magnetic sources are considered: a simple 1-turn coil and three types of coils simulating actual WPT systems. A magnetic sensor whose cross sectional area is 100cm2 as prescribed in International Electrotechnical Commission 62233 is used. Simulation results show that the magnetic field strength detected by the magnetic sensor is affected by its placement angle. The maximum coefficient of variation (CV) is 27.2% when the magnetic source and the sensor are in contact. The reason for this deviation is attributable to the localization of the magnetic field distribution around the magnetic source. The coupling effect between the magnetic source and the sensor is negligible. Therefore, the sensor placement angle is an essential factor in magnetic field measurements. The CV due to the sensor placement angle is reduced from 21% to 4% if the area of the sensor coil is reduced from 100 to 0.75cm2 at 6.78MHz. However, the sensitivity of the sensor coil is decreased by 42.5dB. If measurement uncertainty that considers the deviation in the magnetic field strength due to the sensor placement angle is large, the measured magnetic field strength should be corrected by the uncertainty. If the magnetic field distribution around the magnetic source is known, conservative exposure assessments can be achieved by placing the magnetic sensor in locations at which the spatial averaged magnetic field strengths perpendicular to the magnetic sensor coils become maximum.

  • Latest Trends in Home Networking Technologies Open Access

    Akihiro TSUTSUI  

     
    INVITED PAPER

      Vol:
    E91-B No:8
      Page(s):
    2470-2476

    Broadband access service, including FTTH, is now in widespread use in Japan. More than half of the households that have broadband Internet access construct local area networks (home networks) in their homes. In addition, information appliances such as personal computers, networked audio, and visual devices and game machines are connected to home networks, and many novel service applications are provided via the Internet. However, it is still difficult to install and incorporate these devices and services because networked devices have been developed in different communities. I briefly explain the current status of information appliances and home networking technologies and services and discuss some of the problems in this and their solutions.

  • Ubiquitous Networks with Radio Space Extension over Broadband Networks

    Haruhisa ICHIKAWA  Masashi SHIMIZU  Kazunori AKABANE  

     
    PAPER

      Vol:
    E90-B No:12
      Page(s):
    3445-3451

    Many devices are expected to be networked with wireless appliances such as radio frequency identification (RFID) tags and wireless sensors, and the number of such appliances will greatly exceed the number of PCs and mobile telephones. This may lead to an essential change in the network architecture. This paper proposes a new network architecture called the appliance defined ubiquitous network (ADUN), in which wireless appliances will be networked without network protocol standards. Radio space information rather than individual appliance signals is carried over the ADUN in the form of a stream with strong privacy/security control. It should be noted that this is different from the architectural principles of the Internet. We discuss a network-appliance interface that is sustainable over a long period, and show that the ADUN overhead will be within the scope of the broadband network in the near future.

  • Induced Current Density in the Human Body Using Equivalent Sources for Low-Frequency Inhomogeneous Fields

    Shinichiro NISHIZAWA  Wolfgang SPREITZER  Hans-Oliver RUOSS  Friedrich M. LANDSTORFER  Osamu HASHIMOTO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E84-C No:10
      Page(s):
    1612-1614

    An efficient numerical source model is proposed to calculate the induced current densities in the human body from low-frequency inhomogeneous magnetic fields emitted by electronic devices. Due to the complex geometrical structure of electronic devices (e.g. household appliances, power tools), an efficient equivalent source model based on magnetic elementary dipoles is used instead of the real device or the approximated source model (current loop). Subsequently, the validity of the method proposed is confirmed.

  • On Dynamic Service Integration in VNA Architecture

    Jin NAKAZAWA  Yoshito TOBE  Hideyuki TOKUDA  

     
    PAPER

      Vol:
    E84-A No:7
      Page(s):
    1610-1623

    In forthcoming home network environment, computation capability will be embedded invisibly in home appliances, sensors, walls, ceilings, and floors. People will conduct various tasks using multiple devices simultaneously without consciousness of using computers. In this paper, first, we propose an application model named Virtual Network Appliance (VNA) model which simplify and expand device utilization. In the model, each device has VNA runtime system and function objects, called VNA components, running on it. A user task is defined in an application called VNA which is a logical appliance consisting of abstract function requirements and a message graph among them. Second, we propose Virtual Plug&Play mechanism which is a dynamic service integration mechanism in VNA model implementation. When a user conducts a task, he/she makes a VNA runtime system on a user-side terminal load a VNA definition appropriate for the task. Virtual Plug&Play dynamically discovers required VNA components and establishes the message graph as defined. Since XML documents are used to describe a VNA, users can share and customize it easily. We call the device integration done by Virtual Plug&Play top-down integration, which existing middleware do not aim at. Finally, we show that Virtual Plug&Play affords practical performance for top-down integration by performance evaluation.

  • Multicriteria Codesign Optimization for Embedded Multimedia Communication System

    I-Horng JENG  Feipei LAI  

     
    PAPER-Co-design and High-level Synthesis

      Vol:
    E83-A No:12
      Page(s):
    2474-2487

    In the beginning of the new century, many information appliance (IA) products will replace traditional electronic appliances to help people in smart, efficient, and low-cost ways. These successful products must be capable of communicating multimedia information, which is embedded into the electronic appliances with high integration, innovation, and power-throughput tradeoff. In this paper, we develop a codesign procedure to analyze, compare, and emulate the multimedia communication applications to find the candidate implementations under different criteria. The experimental results demonstrate that in general, memory technology dominates the optimal tradeoff and ALU improvements impact greatly on particular applications. The results also show that the proposed procedure is effective and quite efficient.