1-8hit |
Chunbo LIU Liyin WANG Zhikai ZHANG Chunmiao XIANG Zhaojun GU Zhi WANG Shuang WANG
Aiming at the problem that large-scale traffic data lack labels and take too long for feature extraction in network intrusion detection, an unsupervised intrusion detection method ACOPOD based on Adam asymmetric autoencoder and COPOD (Copula-Based Outlier Detection) algorithm is proposed. This method uses the Adam asymmetric autoencoder with a reduced structure to extract features from the network data and reduce the data dimension. Then, based on the Copula function, the joint probability distribution of all features is represented by the edge probability of each feature, and then the outliers are detected. Experiments on the published NSL-KDD dataset with six other traditional unsupervised anomaly detection methods show that ACOPOD achieves higher precision and has obvious advantages in running speed. Experiments on the real civil aviation air traffic management network dataset further prove that the method can effectively detect intrusion behavior in the real network environment, and the results are interpretable and helpful for attack source tracing.
To achieve object recognition, it is necessary to find the unique features of the objects to be recognized. Results in prior research suggest that methods that use multiple modalities information are effective to find the unique features. In this paper, the overview of the system that can extract the features of the objects to be recognized by integrating visual, tactile, and auditory information as multimodal sensor information with VRAE is shown. Furthermore, a discussion about changing the combination of modalities information is also shown.
Yang WANG Hongliang FU Huawei TAO Jing YANG Hongyi GE Yue XIE
This letter focuses on the cross-corpus speech emotion recognition (SER) task, in which the training and testing speech signals in cross-corpus SER belong to different speech corpora. Existing algorithms are incapable of effectively extracting common sentiment information between different corpora to facilitate knowledge transfer. To address this challenging problem, a novel convolutional auto-encoder and adversarial domain adaptation (CAEADA) framework for cross-corpus SER is proposed. The framework first constructs a one-dimensional convolutional auto-encoder (1D-CAE) for feature processing, which can explore the correlation among adjacent one-dimensional statistic features and the feature representation can be enhanced by the architecture based on encoder-decoder-style. Subsequently the adversarial domain adaptation (ADA) module alleviates the feature distributions discrepancy between the source and target domains by confusing domain discriminator, and specifically employs maximum mean discrepancy (MMD) to better accomplish feature transformation. To evaluate the proposed CAEADA, extensive experiments were conducted on EmoDB, eNTERFACE, and CASIA speech corpora, and the results show that the proposed method outperformed other approaches.
Wenlei BAI Jun GUO Xueqing ZHANG Baoying LIU Daguang GAN
To find the exact items from the massive patent resources for users is a matter of great urgency. Although the recommender systems have shot this problem to a certain extent, there are still some challenging problems, such as tracking user interests and improving the recommendation quality when the rating matrix is extremely sparse. In this paper, we propose a novel method called Collaborative Filtering Auto-Encoder for the top-N recommendation. This method employs Auto-Encoders to extract the item's features, converts a high-dimensional sparse vector into a low-dimensional dense vector, and then uses the dense vector for similarity calculation. At the same time, to make the recommendation list closer to the user's recent interests, we divide the recommendation weight into time-based and recent similarity-based weights. In fact, the proposed method is an improved, item-based collaborative filtering model with more flexible components. Experimental results show that the method consistently outperforms state-of-the-art top-N recommendation methods by a significant margin on standard evaluation metrics.
Jing SUN Yi-mu JI Shangdong LIU Fei WU
Software defect prediction (SDP) plays a vital role in allocating testing resources reasonably and ensuring software quality. When there are not enough labeled historical modules, considerable semi-supervised SDP methods have been proposed, and these methods utilize limited labeled modules and abundant unlabeled modules simultaneously. Nevertheless, most of them make use of traditional features rather than the powerful deep feature representations. Besides, the cost of the misclassification of the defective modules is higher than that of defect-free ones, and the number of the defective modules for training is small. Taking the above issues into account, we propose a cost-sensitive and sparse ladder network (CSLN) for SDP. We firstly introduce the semi-supervised ladder network to extract the deep feature representations. Besides, we introduce the cost-sensitive learning to set different misclassification costs for defective-prone and defect-free-prone instances to alleviate the class imbalance problem. A sparse constraint is added on the hidden nodes in ladder network when the number of hidden nodes is large, which enables the model to find robust structures of the data. Extensive experiments on the AEEEM dataset show that the CSLN outperforms several state-of-the-art semi-supervised SDP methods.
JianFeng WU HuiBin QIN YongZhu HUA LiHuan SHAO Ji HU ShengYing YANG
This paper proposes a deep neural network (DNN) based framework to address the problem of vector quantization (VQ) for high-dimensional data. The main challenge of applying DNN to VQ is how to reduce the binary coding error of the auto-encoder when the distribution of the coding units is far from binary. To address this problem, three fine-tuning methods have been adopted: 1) adding Gaussian noise to the input of the coding layer, 2) forcing the output of the coding layer to be binary, 3) adding a non-binary penalty term to the loss function. These fine-tuning methods have been extensively evaluated on quantizing speech magnitude spectra. The results demonstrated that each of the methods is useful for improving the coding performance. When implemented for quantizing 968-dimensional speech spectra using only 18-bit, the DNN-based VQ framework achieved an averaged PESQ of about 2.09, which is far beyond the capability of conventional VQ methods.
Conventional target recognition methods usually suffer from information-loss and target-aspect sensitivity when applied to radar high resolution range profile (HRRP) recognition. Thus, Effective establishment of robust and discriminatory feature representation has a significant performance improvement of practical radar applications. In this work, we present a novel feature extraction method, based on modified collaborative auto-encoder, for millimeter-wave radar HRRP recognition. The latent frame-specific weight vector is trained for samples in a frame, which contributes to retaining local information for different targets. Experimental results demonstrate that the proposed algorithm obtains higher target recognition accuracy than conventional target recognition algorithms.
Minkyu SHIN Seongkyu MUN David K. HAN Hanseok KO
In this paper, a multichannel speech enhancement system which adopts a denoising auto-encoder as part of the beamformer is proposed. The proposed structure of the generalized sidelobe canceller generates enhanced multi-channel signals, instead of merely one channel, to which the following denoising auto-encoder can be applied. Because the beamformer exploits spatial information and compensates for differences in the transfer functions of each channel, the proposed system is expected to resolve the difficulty of modelling relative transfer functions consisting of complex numbers which are hard to model with a denoising auto-encoder. As a result, the modelling capability of the denoising auto-encoder can concentrate on removing the artefacts caused by the beamformer. Unlike conventional beamformers, which combine these artefacts into one channel, they remain separated for each channel in the proposed method. As a result, the denoising auto-encoder can remove the artefacts by referring to other channels. Experimental results prove that the proposed structure is effective for the six-channel data in CHiME, as indicated by improvements in terms of speech enhancement and word error rate in automatic speech recognition.