The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] bit/byte(2hit)

1-2hit
  • Single Byte Error Correcting Codes with Double Bit within a Block Error Correcting Capability for Memory Systems

    Ganesan UMANESAN  Eiji FUJIWARA  

     
    LETTER-Coding Theory

      Vol:
    E85-A No:2
      Page(s):
    513-517

    Existing byte error control codes require too many check bits if applied to a memory system that uses recent semiconductor memory chips with wide I/O data such as 16 or 32 bits, i.e., b=16 or 32. On the other hand, semiconductor memory chips are highly vulnerable to random double bit within a memory chip errors when they are used in some applications, such as satellite memory systems. Under this situation, it becomes necessary to design suitable new codes with double bit within a chip error correcting capability for computer memory systems. This correspondence proposes a class of codes called Double bit within a block Error Correcting - Single b-bit byte Error Correcting ((DEC)B-SbEC) codes where block and byte correspond to memory chip and memory sub-array data outputs, respectively. The proposed codes provide protection from both random double bit errors and single sub-array data faults. For most of the practical cases, the (DEC)B-SbEC codes presented in this correspondence have the capability of accommodating the check bits in a single dedicated memory chip.

  • Random Double Bit Error Correcting--Single b-bit Byte Error Correcting (DEC-SbEC) Codes for Memory Systems

    Ganesan UMANESAN  Eiji FUJIWARA  

     
    LETTER-Coding Theory

      Vol:
    E85-A No:1
      Page(s):
    273-276

    Besides single byte errors which are caused by single chip failures, semiconductor memories used in some applications, such as satellite memory systems, are highly vulnerable to random double bit errors. It is therefore necessary to design Double bit Error Correcting--Single b-bit byte Error Correcting (DEC-SbEC) codes which correct both random double bit errors and single b-bit byte errors. This correspondence proposes a class of generic DEC-SbEC codes that are applicable to computer memory systems using recent high density DRAM chips with wide I/O data, such as, 8, 16 or 32 bits per chip. The proposed DEC-S8EC codes are suitable for memory systems using DRAM chips with 8-bit I/O data, and require 24 check bits for practical information lengths such as 64 and 128 bits.