The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] carrier(500hit)

61-80hit(500hit)

  • Subcarrier Allocation for the Recovery of a Faulty Cell in an OFDM-Based Wireless System

    Changho YIM  Unil YUN  Eunchul YOON  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2243-2250

    An efficient subcarrier allocation scheme of a supporting cell is proposed to recover the communication of faulty cell users in an OFDM-based wireless system. With the proposed subcarrier allocation scheme, the number of subcarriers allocated to faulty cell users is maximized while the average throughput of supporting cell users is maintained at a desired level. To find the maximum number of subcarriers allocated to faulty cell users, the average throughput of the subcarrier with the k-th smallest channel gain in a subcarrier group is derived by an inductive method. It is shown by simulation that the proposed subcarrier allocation scheme can provide more subcarriers to faulty cell users than the random selection subcarrier allocation scheme.

  • Analog Single-Carrier Transmission with Frequency-Domain Equalization

    Thanh Hai VO  Shinya KUMAGAI  Tatsunori OBARA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1958-1966

    In this paper, a new analog signal transmission technique called analog single-carrier transmission with frequency-domain equalization (analog SC-FDE) is proposed. Analog SC-FDE applies discrete Fourier transform (DFT), frequency-domain spectrum shaping and mapping, inverse DFT (IDFT), and cyclic prefix (CP) insertion before transmission. At the receiver, one-tap FDE is applied to take advantage of frequency diversity. This paper considers, as an example, analog voice transmission. A theoretical analysis of the normalized mean square error (NMSE) performance is carried out to evaluate the transmission property of the proposed analog SC-FDE and is confirmed by computer simulation. We show that analog SC-FDE achieves better NMSE performance than conventional analog signal transmission scheme.

  • Experiments Validating the Effectiveness of Multi-Point Wireless Energy Transmission with Carrier Shift Diversity Open Access

    Daiki MAEHARA  Gia Khanh TRAN  Kei SAKAGUCHI  Kiyomichi ARAKI  Minoru FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1928-1937

    This paper presents a method to seamlessly extend the coverage of energy supply field for wireless sensor networks in order to free sensors from wires and batteries, where the multi-point scheme is employed to overcome path-loss attenuation, while the carrier shift diversity is introduced to mitigate the effect of interference between multiple wave sources. As we focus on the energy transmission part, sensor or communication schemes are out of scope of this paper. To verify the effectiveness of the proposed wireless energy transmission, this paper conducts indoor experiments in which we compare the power distribution and the coverage performance of different energy transmission schemes including conventional single-point, simple multi-point and our proposed multi-point scheme. To easily observe the effect of the standing-wave caused by multipath and interference between multiple wave sources, 3D measurements are performed in an empty room. The results of our experiments together with those of a simulation that assumes a similar antenna setting in free space environment show that the coverage of single-point and multi-point wireless energy transmission without carrier shift diversity are limited by path-loss, standing-wave created by multipath and interference between multiple wave sources. On the other hand, the proposed scheme can overcome power attenuation due to the path-loss as well as the effect of standing-wave created by multipath and interference between multiple wave sources.

  • Joint Tx/Rx MMSE Filtering for Single-Carrier MIMO Transmission

    Shinya KUMAGAI  Tatsunori OBARA  Tetsuya YAMAMOTO  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:9
      Page(s):
    1967-1976

    In this paper, we propose a joint transmit and receive linear filtering based on minimum mean square error criterion (joint Tx/Rx MMSE filtering) for single-carrier (SC) multiple-input multiple-output (MIMO) transmission. Joint Tx/Rx MMSE filtering transforms the MIMO channel to the orthogonal eigenmodes to avoid the inter-antenna interference (IAI) and performs MMSE based transmit power allocation to sufficiently suppress the inter-symbol interference (ISI) resulting from the severe frequency-selectivity of the channel. Rank adaptation and adaptive modulation are jointly introduced to narrow the gap of received signal-to-interference plus noise power ratio (SINR) among eigenmodes. The superiority of the SC-MIMO transmission with joint Tx/Rx MMSE filtering and joint rank adaptation/adaptive modulation is confirmed by computer simulation.

  • Unified Analysis of ICI-Cancelled OFDM Systems in Doubly-Selective Channels

    Chi KUO  Jin-Fu CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1435-1448

    The effect of transceiver impairments (consisting of frequency offset, phase noise and doubly-selective channel) is a key factor for determining performance of an orthogonal frequency-division multiplexing (OFDM) system since the transceiver impairments trigger intercarrier interference (ICI). These impairments are well known and have been investigated separately in the past. However, these impairments usually arise concurrently and should be jointly considered from the perspectives of both receiver design and system evaluation. In this research, impact of these impairments on an OFDM system is jointly analyzed and the result degenerates to the special case where only a specific impairment is present. A mitigation method aided by segment-by-segment time-domain interpolation (STI) is then proposed following the analysis. STI is general, and its weights can be specified according to the interpolation method and system requirements. Computer simulation is used to validate the analysis and to compare the performance of the proposed method with those of other proposals.

  • Analysis on Effectiveness of Fractional Frequency Reuse for Uplink Using SC-FDMA in Cellular Systems

    Masashi FUSHIKI  Takeo OHSEKI  Satoshi KONISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1457-1466

    Single Carrier — Frequency Domain Multiple Access (SC-FDMA) is a multiple access technique employed in LTE uplink transmission. SC-FDMA can improve system throughput by frequency selective scheduling (FSS). In cellular systems using SC-FDMA in the uplink, interference arising from user equipments (UEs) in neighboring cells degrades the system throughput, especially the throughput of cell-edge UEs. In order to overcome this drawback, many papers have considered fractional frequency reuse (FFR) techniques and analyzed their effectiveness. However, these studies have come to different conclusions regarding the effectiveness of FFR because the throughput gain of FFR depends on the frequency reuse design and evaluation conditions. Previous papers have focused on the frequency reuse design. Few papers have examined the conditions where FFR is effective, and only the UE traffic conditions have been evaluated. This paper reveals other conditions where FFR is effective by demonstrating the throughput gain of FFR. In order to analyze the throughput gain of FFR, we focus on the throughput relationship between FFR and FSS. System level simulation results demonstrate that FFR is effective when the following conditions are met: (i) the number of UEs is small and (ii) the multipath delay spread is large or close to 0.

  • Subcarrier Intensity Modulation/Spatial Modulation for Optical Wireless Communications

    Yan CHENG  Seung-Hoon HWANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:5
      Page(s):
    1044-1049

    In this paper, we investigate a combination scheme of subcarrier intensity-modulation (SIM) with spatial modulation (SM) for optical wireless communication. Using computer simulation, the performances of the proposed SIM/SM scheme are investigated and compared with those of the conventional SIM scheme in the additive white gaussian noise (AWGN) as well as in outdoor environment with turbulence induced fading characteristics. Numerical results show that the proposed SIM/SM scheme can outperform the conventional SIM in an environment with different spectral efficiencies. When the spectral efficiency is varied from 2bits/s/Hz to 4bits/s/Hz, an Eb/N0 gain of 2dB to 5dB is achieved, when the bit error rate of 10-5 is maintained. It shows that the employment of SM may further improve the power efficiency of SIM, when the number of subcarriers increases according to the spectral efficiency. When the spectral efficiency is 4bits/s/Hz, the SIM/SM scheme for 0.5 of log-irradiance variance in the log-normal turbulence channel shows the same performance as SIM with variance of 0.3. This means that the SIM/SM can be an alternative choice in even worse environments.

  • Different Mechanisms of Temperature Dependency of N-Hit SET in Bulk and PD-SOI Technology

    Biwei LIU  Yankang DU  Kai ZHANG  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E97-C No:5
      Page(s):
    455-459

    Many studies have reported that the single-event transient (SET) width increases with temperature. However, the mechanism for this temperature dependency is not clear, especially for an N-hit SET. In this study, TCAD simulations are carried out to study the temperature dependence of N-hit SETs in detail. Several possible factors are examined, and the results show that the temperature dependence in bulk devices is due to the decrease in the carrier mobility with temperature in both the struck NMOS and the pull-up PMOS. In contrast, the temperature dependence in SOI devices is due to the decrease in the diffusion constant and carrier lifetime with temperature, which enhances the parasitic bipolar effect.

  • IEEE 802.11af TVWS-WLAN with Partial Subcarrier System for Effective TVWS Utilization

    Keiichi MIZUTANI  Zhou LAN  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    886-895

    Demand for wireless communication is increasing significantly, but the frequency resources available for wireless communication are quite limited. Currently, various countries are prompting the use of TV white spaces (TVWS). IEEE 802.11 Working Group (WG) has started a Task Group (TG), namely IEEE 802.11af, to develop an international standard for Wireless local Area Networks (WLANs) in TVWS. In order to increase maximum throughput, a channel aggregation mechanism is introduced in the draft standard. In Japan, ISDB-T based area-one-segment broadcasting system (Area-1seg) which is a digital TV broadcast service in limited areas has been permitted to offer actual TVWS services since April 2012. The operation of the IEEE 802.11af system shall not jeopardize the Area-1seg system due to the common operating frequency band. If the Area-1seg partially overlaps with the IEEE 802.11af in some frequency, the IEEE 802.11af cannot use the channel aggregation mechanism due to a lack of channels. As a result, the throughput of the IEEE 802.11af deteriorates. In this paper, the physical layer of IEEE 802.11af D4.0 is introduced briefly, and a partial subcarrier system for IEEE 802.11af is proposed to efficiently use the TVWS spectrum. The IEEE 802.11af co-exist with the Area-1seg by using null subcarriers. Computer simulation shows up to around 70% throughput gain is achieved with the proposed mechanism.

  • Signal-Carrier Cooperative DF Relay Using Adaptive Modulation

    Kazuhiro KIMURA  Hiroyuki MIYAZAKI  Tatsunori OBARA  Fumiyuki ADACHI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:2
      Page(s):
    387-395

    2-time slot cooperative relay can be used to increase the cell-edge throughput. Adaptive data modulation further improves the throughput. In this paper, we introduce adaptive modulation to single-carrier (SC) cooperative decode-and-forward (DF) relay. The best modulation combination for mobile-terminal (MT)-relay station (RS) and RS-base station (BS) links is determined for the given local average signal-to-noise power ratios (SNRs) of MT-BS, MT-RS and RS-BS links. According to the modulation combination, the ratio of time slot length of the MT-RS link (first time slot) and the RS-BS link (second time slot) is changed. It is shown by computer simulation that the use of adaptive modulation can achieve higher throughput than fixed modulation and reduces by about 9dB the required normalized total transmit SNR for a 10%-outage throughput of 0.8 bps/Hz compared to direct transmission.

  • Performance Analysis of MIMO/FSO Systems Using SC-QAM Signaling over Atmospheric Turbulence Channels

    Trung HA DUYEN  Anh T. PHAM  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    49-56

    We theoretically study the performance of multiple-input multiple-output (MIMO) free-space optical (FSO) systems using subcarrier quadrature modulation (SC-QAM) signaling. The system average symbol-error rate (ASER) is derived taking into account the atmospheric turbulence effects on the MIMO/FSO channel, which is modeled by log-normal and the gamma-gamma distributions for weak and moderate-to-strong turbulence conditions. We quantitatively discuss the influence of index of refraction structure parameter, link distance, and different MIMO configurations on the system ASER. We also analytically derive and discuss the MIMO/FSO average (ergodic) channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE), under the impact of various channel conditions. Monte Carlo simulations are also performed to validate the mathematical analysis, and a good agreement between numerical and simulation results is confirmed.

  • Investigation on Frequency Diversity Effects of Various Transmission Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDMA

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    30-39

    This paper presents frequency diversity effects of localized transmission, clustered transmission, and intra-subframe frequency hopping (FH) using a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). In the evaluations, we employ the normalized frequency mean square covariance (NFMSV) as a measure of the frequency diversity effect, i.e., randomization level of the frequency domain interleaving associated with turbo coding. Link-level computer simulation results show that frequency diversity is very effective in decreasing the required average received signal-to-noise power ratio (SNR) at the target average block error rate (BLER) using a linear minimum mean-square error (LMMSE) based FDE according to the increase in the entire transmission bandwidth for DFT-precoded OFDMA. Moreover, we show that the NFMSV is an accurate measure of the frequency diversity effect for the 3 transmission schemes for DFT-precoded OFDMA. We also clarify the frequency diversity effects of the 3 transmission schemes from the viewpoint of the required average received SNR satisfying the target average BLER for the various key radio parameters for DFT-precoded OFDMA in frequency-selective Rayleigh fading channels.

  • Joint Resource Allocation Algorithm in Carrier Aggregation Enabled Future Wireless Networks

    Zanjie HUANG  Yusheng JI  Hao ZHOU  Baohua ZHAO  

     
    PAPER-Resource Allocation

      Vol:
    E97-A No:1
      Page(s):
    78-85

    To improve the data rate in OFDMA-based wireless networks, Carrier Aggregation (CA) technology has been included in the LTE-Advanced standard. Different Carrier Component (CC) capacities of users under the same eNodeB (eNB, i.e. Base Station) make it challenging to allocate resources with CA. In this paper, we jointly consider CC and Resource Block (RB) assignments, and power allocation to achieve proportional fairness in the long term. The goal of the problem is to maximize the overall throughput with fairness consideration. We consider a more general CC assignment framework that each User Equipment (UE) (i.e. Mobile Station) can support any number of CCs. Furthermore, we have proved the problem is NP-hard, even if power is equally allocated to RBs. Thus, first an optimal RB assignment and power allocation algorithm is proposed and then a carrier aggregation enabled joint resource allocation algorithm called CARA is proposed. By jointly considering CC and RB assignments, and power allocation, the proposed approach can achieve better performance. Simulation results show the proposed algorithm can significantly improve performance, e.g., total throughput compared with the existing algorithm.

  • 2-Step Frequency-Domain Iterative Channel Estimation for Training Sequence Inserted Single-Carrier Block Transmission

    Tetsuya YAMAMOTO  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:1
      Page(s):
    146-154

    In this paper, we propose a spectrally efficient frequency-domain channel estimation scheme suitable for training sequence inserted single-carrier (TS-SC) block transmission using frequency-domain equalization (FDE). The proposed scheme performs the channel estimation in two steps and allows the use of shorter TS (but, longer than the channel length) than the conventional channel estimation schemes. In the first step, the received TS having cyclic property is constructed for performing frequency-domain channel estimation and the improved channel estimate is obtained by using simple averaging of noisy channel estimates. In the second step, the maximum likelihood channel estimation is carried out iteratively by using both the TS and the estimated symbol sequence obtained in the first step. It is shown by computer simulation that the proposed 2-step frequency-domain iterative channel estimation scheme achieves a bit error rate (BER) performance close to perfect channel estimation even in a relatively fast fading environment.

  • Performance of Star 16QAM Schemes Considering Cubic Metric for Uplink DFT-Precoded OFDMA

    Teruo KAWAMURA  Yoshihisa KISHIYAMA  Mamoru SAWAHASHI  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    18-29

    This paper investigates the average block error rate (BLER) performance of star 16QAM schemes considering the effective peak-to-average power ratio (PAPR) criterion called a cubic metric (CM) for uplink discrete Fourier transform (DFT)-precoded orthogonal frequency division multiple access (OFDMA). We clarify the best ring amplitude ratio for the (4, 12) and (8, 8) star 16QAM schemes from the viewpoint of the required average signal-to-noise power ratio (SNR) that satisfy the target average BLER based on link-level simulations. We also validate the agreement of the best ring amplitude ratios with those maximizing the mutual information based throughput. Then, employing the best ring amplitude ratios for the respective coding rates of the turbo code, we show that (8, 8) star 16QAM achieves better average BLER performance compared to that for (4, 12) star 16QAM. Moreover, we show the effectiveness of the (8, 8) star 16QAM scheme compared to square 16QAM in terms of the required average received SNR considering the CM when the coding rate is low such as 1/3 for uplink DFT-precoded OFDMA.

  • Joint Transmit/Receive MMSE-FDE for Analog Network Coded Single-Carrier Bi-directional Multi-Antenna Relay

    Hiroyuki MIYAZAKI  Tatsunori OBARA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3153-3162

    In this paper, joint transmit/receive frequency-domain equalization (FDE) is proposed for analog network coded (ANC) single-carrier (SC) bi-directional multi-antenna relay. In the proposed scheme, diversity transmission using transmit FDE is performed at relay station (RS) equipped with multiple antennas while receive FDE is carried out at base station (BS) and mobile terminal (MT) both equipped with single antenna. The transmit and receive FDE weights are jointly optimized so as to minimize the end-to-end mean square error (MSE). We evaluate, by computer simulation, the throughput performance and show that the joint transmit/receive FDE obtains the spatial and frequency diversity gains and accordingly achieve better throughput performance compared to either the transmit FDE only or the receive FDE only. It is also shown that ANC SC bi-directional multi-antenna relay can extend the communication coverage area for the given required throughput compared to conventional direct transmission.

  • Semi-Analytical Method for Performance Analysis of Code-Aided Soft-Information Based Iterative Carrier Phase Recovery

    Nan WU  Hua WANG  Hongjie ZHAO  Jingming KUANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E96-B No:12
      Page(s):
    3062-3069

    This paper studies the performance of code-aided (CA) soft-information based carrier phase recovery, which iteratively exploits the extrinsic information from channel decoder to improve the accuracy of phase synchronization. To tackle the problem of strong coupling between phase recovery and decoding, a semi-analytical model is proposed to express the distribution of extrinsic information as a function of phase offset. Piecewise approximation of the hyperbolic tangent function is employed to linearize the expression of soft symbol decision. Building on this model, open-loop characteristic and closed-loop performance of CA iterative soft decision-directed (ISDD) carrier phase synchronizer are derived in closed-form. Monte Carlo simulation results corroborate that the proposed expressions are able to characterize the performance of CA ISDD carrier phase recovery for systems with different channel codes.

  • Experiments on Asymmetric Carrier Aggregation Associated with Control Signaling Reception Quality in LTE-Advanced

    Keisuke SAITO  Yuichi KAKISHIMA  Teruo KAWAMURA  Yoshihisa KISHIYAMA  Hidekazu TAOKA  Hidehiro ANDOH  

     
    PAPER-Communication Theory and Signals

      Vol:
    E96-A No:11
      Page(s):
    2106-2113

    LTE-Advanced supports asymmetric carrier aggregation (CA) to achieve flexible bandwidth allocation by applying different numbers of component carriers (CCs) between the downlink and uplink. This paper experimentally clarifies the achievable downlink throughput performance when uplink control information (UCI) feedback mechanism using the physical uplink shared channel (PUSCH), which enables minimization of the UCI overhead while maintaining the required reception quality, is applied in asymmetric CA. The laboratory experimental results show that the stable reception quality control of the channel quality information (CQI) with the target block error rate (BLER) of 10-1 to 10-2 is achieved irrespective of the average received signal-to-noise power ratio (SNR) when the control offset parameter of approximately 1.25 is used. We also show that the achievable downlink throughput when the CQI error is considered is almost the same as that in no CQI error case. Furthermore, based on the experimental results in a real field environment, a suburban area of Yokosuka city in Japan, we confirm stable adaptive modulation and coding (AMC) operation including target BLER control of the CQI on the PUSCH in asymmetric CA. The field experimental results also show that when CA with 5 CCs (90-MHz bandwidth) and 2-by-2 rank-2 multiple-output multiple-input (MIMO) multiplexing are employed in the downlink, the peak throughput of approximately 640Mbps is achieved even considering the CQI error.

  • Blind Carrier Frequency Offset Estimation Based on Polynomial Rooting for Interleaved Uplink OFDMA

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:10
      Page(s):
    2057-2060

    This letter deals with blind carrier frequency offset estimation by exploiting the minimum variance distortionless response (MVDR) criterion for interleaved uplink orthogonal frequency division multiple access (OFDMA). It has been shown that the complexity and estimation accuracy of MVDR strictly depend on the grid size used during the search. For the purpose of efficient estimation, we present an improved polynomial rooting estimator that is robust in low signal-to-noise ratio scenario. Simulation results are provided for illustrating the effectiveness of the proposed estimator.

  • Selection of Component Carriers Using Centralized Baseband Pooling for LTE-Advanced Heterogeneous Networks

    Hiroyuki SEKI  Takaharu KOBAYASHI  Dai KIMURA  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1288-1296

    Bandwidth expansion in Long Term Evolution (LTE)-Advanced is supported via carrier aggregation (CA), which aggregates multiple component carriers (CCs) to accomplish very high data rate communications. Heterogeneous networks (HetNets), which set pico-base stations in macrocells are also a key feature of LTE-Advanced to achieve substantial gains in coverage and capacity compared to macro-only cells. When CA is applied in HetNets, transmission on all CCs may not always be the best solution due to the extremely high levels of inter-cell interference experienced by HetNets. Activated CCs that are used for transmission should be selected depending on inter-cell interference conditions and the traffic offered in the cells. This paper presents a scheme to select CCs through centralized control assuming a centralized baseband unit (C-BBU) configuration. A C-BBU involves pooling tens or hundreds of baseband resources where one baseband resource can be connected to any CC installed in remote radio heads (RRHs) via optical fibers. Fewer baseband resources can be prepared in a C-BBU than those of CCs in RRHs to reduce the cost of equipment. Our proposed scheme selects the activated CCs by considering the user equipment (UE) assigned to CCs under the criterion of maximizing the proportional fairness (PF) utility function. Convex optimization using the Karush-Kuhn-Tucker (KKT) conditions is applied to solve the resource allocation ratio that enables user throughput to be estimated. We present results from system level simulations of the downlink to demonstrate that the proposed algorithm to select CCs can outperform the conventional one that selects activated CCs based on the received signal strength. We also demonstrate that our proposed algorithm to select CCs can provide a good balance in traffic load between CCs and achieve better user throughput with fewer baseband resources.

61-80hit(500hit)