The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] coupling noise(5hit)

1-5hit
  • CMOS Radio Design for Complete Single Chip GPS SoC

    Norihito SUZUKI  Takahide KADOYAMA  Masayuki KATAKURA  

     
    PAPER-Analog

      Vol:
    E88-C No:4
      Page(s):
    496-501

    A GPS radio design for a complete single chip GPS receiver using 0.18-µm CMOS is presented. The complete single chip GPS receiver satisfies several key requirements for mobile applications, such as compactness, low power, and high sensitivity. The radio part, including the RF front end, the RF/IF PLLs, and IF functions, occupies 2.0 2.3 mm in a total chip area of 6.3 6.3 mm. It is fabricated using 0.18-µm CMOS technology utilizing MIM capacitors. The radio part operates within a 1.6 to 2.0 V supply voltage range and consumes 27 mW at 1.8 V. The whole GPS SoC consumes 57 mW for a fully functional chip and provides a high sensitivity of -152 dBm. The radio design features countermeasures against substrate coupling noise from the digital part.

  • Crosstalk Noise Optimization by Post-Layout Transistor Sizing

    Masanori HASHIMOTO  Hidetoshi ONODERA  

     
    PAPER-Physical Design

      Vol:
    E87-A No:12
      Page(s):
    3251-3257

    This paper proposes a post-layout transistor sizing method for crosstalk noise reduction. The proposed method downsizes the drivers of aggressor wires for noise reduction, utilizing the precise interconnect information extracted from the detail-routed layouts. We develop a transistor sizing algorithm for crosstalk noise reduction under delay constraints, and construct a crosstalk noise optimization method utilizing an analytic crosstalk noise model and a transistor sizing framework that have been developed. Our method exploits the transistor sizing framework that can vary transistor widths inside cells with interconnects unchanged. Our optimization method therefore never causes a new crosstalk noise problem, and does not need iterative layout optimization. The effectiveness of the proposed method is experimentally examined using 2 circuits. The maximum noise voltage is reduced by more than 50% without delay violation. These results show that the risk of crosstalk noise problems can be considerably reduced after detail-routing.

  • Experimental Study on Fully Integrated Active Guard Band Filters for Suppressing Substrate Noise in Sub-Micron CMOS Processes for System-on-a-Chip

    Keiko Makie-FUKUDA  Toshiro TSUKADA  

     
    PAPER-Integrated Electronics

      Vol:
    E86-C No:1
      Page(s):
    89-96

    This paper describes fully integrated active guard band filters for suppressing the substrate coupling noise and their noise suppression effect measured by test chip experiments. The noise cancellation circuit of the active guard band filters simply consists of an inverter and a source follower. The substrate noise suppression effect was measured by using a test chip fabricated in a 0.18 µm CMOS triple-well process for system-on-a-chip. The noise with the filter was less than 5% of that without the filter and the noise suppression effect was observed from 1 MHz to 200 MHz by the statistical measurement of the voltage comparator. The noise suppression effect was also observed for actual digital switching noise produced by digital inverters. Configuration of the active guard band filter was investigated by simulation and it is shown that high and uniform noise suppression effect is achieved by placing the guard bands in the L-shape around the target triple-well area on the p-substrate.

  • On-Chip Active Guard Band Filters to Suppress Substrate-Coupling Noise in Mixed-Signal Integrated Circuits

    Keiko Makie-FUKUDA  Toshiro TSUKADA  

     
    PAPER-Electronic Circuits

      Vol:
    E83-C No:10
      Page(s):
    1663-1668

    An AC coupling configuration for the active guard band filters is introduced for suppressing substrate coupling noise in analog and digital mixed-signal integrated circuits. With this method, a substrate-coupling-noise cancellation signal can be supplied to a ground-level substrate by using a single 3-V supply on-chip circuits. Noise was suppressed to a maximum of less than 0.05 from 100 Hz to 2 MHz in a 0.35-µm CMOS test chip. Both experiments and a simulation based on the substrate extraction model showed the similar dependence of the noise-suppression effect on the arrangement of the guard-bands and analog circuits. The simulation is thus effective for optimizing the arrangement to suppress noise effects when designing a chip.

  • Power Reduction of New Divided Layer Bitline Dual Port SRAM with a-Si/Ti Local Wiring Scheme

    Koichi MORIKAWA  Jiro IDA  

     
    PAPER

      Vol:
    E79-C No:12
      Page(s):
    1713-1719

    The local wiring structure which is known as a technique for reducing junction capacitance due to the area reduction of the Source/Drain junction by the "on-field" contact scheme was constructed. Its effect on speed/power improvement was evaluated with a ring oscillator. A speed improvement of 15% and a 17% reduction in power dissipation was obtained as compared with conventional non-local wiring structures. This technique was applied to a practical device application, that is, a 0.35 µm embedded dual port SRAM used as a buffer memory in an asynchronous transfer mode switch (ATM-SW) LSI. In order to suppress the coupling noise between the write and read bitlines with the small cell realized by the local wiring scheme, a new divided layer 'bitline architecture was developed. As a result, reduction of SRAM macro size of 31% was attained by also applying the local wiring scheme to peripheral circuits, such as decoder, sense amplifier, and driver. A detailed analysis on this embedded dual port SRAM revealed a 15.2% reduction of write port power at 3.3 V. It is also shown that the local wiring technique is more effective with low power supply voltages to allow for further power reduction.