The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] defected ground structure(6hit)

1-6hit
  • A New SIDGS-Based Tunable BPF Design Method with Controllable Bandwidth

    Weiyu ZHOU  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/03/28
      Vol:
    E106-C No:10
      Page(s):
    614-622

    This paper provides a new method to implement substrate integrated defected ground structure (SIDGS)-based bandpass filter (BPF) with adjustable frequency and controllable bandwidth. Compared with previous literature, this method implements a new SIDGS-like resonator capable of tunable frequency in the same plane as the slotted line using a varactor diode, increasing the design flexibility. In addition, the method solves the problem that the tunable BPF constituted by the SIDGS resonator cannot control the bandwidth by introducing a T-shaped non-resonant unit. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured to show the validity of the design method in this paper.

  • A Power Divider with Adjustable Dividing Ratio

    Jongsik LIM  Seongmin OH  Jae-Jin KOO  Yongchae JEONG  Dal AHN  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:3
      Page(s):
    389-391

    An unequal Wilkinson power divider with adjustable power dividing ratio is proposed. The proposed power divider consists of rectangular defected ground structure (DGS), isolated island in DGS, and varactor diodes. The impedance of the microstrip line greatly increases due to the DGS, and varies because of the varying capacitance of diodes. The measured unequal dividing ratios vary from 1.97-13.4 and 2.25-10.6 when 2- and 4-diodes are adopted.

  • A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW

    Min-Hang WENG  Chang-Sin YE  Cheng-Yuan HUNG  Chun-Yueh HUANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:2
      Page(s):
    224-227

    A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.

  • Novel Periodic Structures for a Slotline : Patch Loaded Slotline

    Jongkuk PARK  Jong-Sik LIM  Sangwook NAM  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:1
      Page(s):
    135-138

    In this Letter, a dumbbell-shaped patch loaded slotline(PLS) is proposed. Like the conventional defected ground structure(DGS) for a microstrip line, we show that the proposed PLS can provide a wide bandstop characteristic in some frequency bands with only one or small number of unit cells. Also, the equivalent circuit model for a unit section is derived from the analysis of the field distributions in the structure and its circuit parameters are determined by means of full wave numerical simulations. This equivalent circuit is shown to be dual to that of the typical DGS in a microstrip line. A broadband microstrip to slotline transition is incorporated in the PLS in order to measure the characteristics of the structure. The experimental results agree well with the simulations and show the validity of the modeling for the proposed PLS.

  • A Novel Two-Dimensional (2-D) Defected Ground Array for Planar Circuits

    Hai-Wen LIU  Xiao-Wei SUN  Zheng-Fan LI  Jun-Fa MAO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:1
      Page(s):
    109-112

    This letter presents a novel two-dimensional (2-D) defected ground array (DGA) for planar circuits, which has horizontal and vertical periodicities of defect structure. The defect unit cell of DGA is composed of a Sierpinski carpet structure to improve the effective inductance. Measurements show that the proposed DGA provides steeper cutoff characteristics, lower cutoff frequency, and higher slow-wave factors than the conventional periodic defected ground structure in the same occupied surface.

  • Improvement in Performance of Power Amplifiers by Defected Ground Structure

    Jong-Sik LIM  Yong-Chae JEONG  Dal AHN  Sangwook NAM  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:1
      Page(s):
    52-59

    This paper describes the performance improvement of power amplifiers by defected ground structure (DGS). Due to the excellent capability of harmonic rejection and tuning, DGS plays a great role in improving the major nonlinear behaviors of power amplifier such as output power, harmonics, power added efficiency (PAE), and the ratio between the carrier and the third order intermodulation distortion (C/IMD3). In order to verify the improvement of performances by DGS, measured data for a power amplifier, which adopts a 30 Watts LDMOS device for the operation at 2.1-2.2 GHz, are illustrated under several operating bias currents for two cases, i.e., with and without DGS attached. The principle of the improvement is described by the simple Volterra nonlinear transfer functions with the consideration of different operating classes. The obtained improvement of the 30 Watts power amplifier, under 400 mA of IdsQ as an example, includes the reduction in the second and third harmonics by 17 dB and 20 dB, and the increase in output power, PAE, and C/IMD3 by 1.3 Watts, 3.4%, and 4.7 dB, respectively.