The search functionality is under construction.

Keyword Search Result

[Keyword] deinterlacing(10hit)

1-10hit
  • An Edge Dependent Weighted Filter for Video Deinterlacing

    Hao ZHANG  Mengtian RONG  Tao LIU  

     
    LETTER-Image

      Vol:
    E98-A No:2
      Page(s):
    788-791

    In this letter, we propose a new intra-field deinterlacing algorithm based on an edge dependent weighted filter (EDWF). The proposed algorithm consists of three steps: 1) calculating the gradients of three directions (45°, 90°, and 135°) in the local working window; 2) achieving the weights of the neighboring pixels by exploiting the edge information in the pixel gradients; 3) interpolating the missing pixel using the proposed EDWF interpolator. Compared with existing deinterlacing methods on different images and video sequences, the proposed algorithm improves the peak signal-to-noise-ratio (PSNR) while achieving better subjective quality.

  • Fuzzy Metric Based Weight Assignment for Deinterlacing

    Gwanggil JEON  Young-Sup LEE  SeokHoon KANG  

     
    LETTER-Image

      Vol:
    E97-A No:1
      Page(s):
    440-443

    An effective interlaced-to-progressive scanning format conversion method is presented for the interpolation of interlaced images. On the basis of the weight assignment algorithm, the proposed method is composed of three stages: (1) straightforward interpolation with pre-determined six-tap filter, (2) fuzzy metric-based weight assignment, (3) updating the interpolation results. We first deinterlace the missing line with six-tap filter in the working window. Then we compute the local weight among the adjacent pixels with a fuzzy metric. Finally we deinterlace the missing pixels using the proposed interpolator. Comprehensive simulations conducted on different images and video sequences have proved the effectiveness of the proposed method, with significant improvement over conventional methods.

  • A Gradient Inverse Weighted Filtering Approach for Video Deinterlacing

    Xiangdong CHEN  Gwanggil JEON  Jechang JEONG  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E95-B No:12
      Page(s):
    3933-3936

    In this letter, an intra-field deinterlacing algorithm based on a gradient inverse weighted filtering (GIWF) interpolator is proposed. The proposed algorithm consists of three steps: We first interpolate the missing line with simple strategies in the working window. Then we calculate the coefficients of the gradient-weighted filters by exploiting the local gray gradients among the neighboring pixels. In the last step, we interpolate the missing line using the proposed GIWF interpolator. Experiments show that the proposed algorithm provides superior performances in terms of both objective and subjective image qualities.

  • Weighted Interpolation Scheme for Robust Video Deinterlacing

    Gwanggil JEON  Min Young JUNG  Jechang JEONG  Sung Han PARK  Il Hong SUH  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E92-D No:3
      Page(s):
    552-554

    In this letter, a low-cost weighted interpolation scheme (WIS) for deinterlacing within a single frame is discussed. Three useful weights measurements are introduced within the operation window to reduce false decisions on the basis of the LCID algorithm. The WIS algorithm has a simple weight-evaluating structure with low complexity, which therefore makes it easy to implement in hardware. Experimental results demonstrated that the WIS algorithm performs better than previous techniques.

  • Multiresolution-Based Texture Adaptive Algorithm for High-Quality Deinterlacing

    Gwo Giun LEE  He-Yuan LIN  Drew Wei-Chi SU  Ming-Jiun WANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:11
      Page(s):
    1821-1830

    This paper introduces a texture analysis mechanism utilizing multiresolution technique to reduce false motion detection and hence thoroughly improve the interpolation results for high-quality deinterlacing. Conventional motion-adaptive deinterlacing algorithm selects from inter-field and intra-field interpolations according to motion. Accurate determination of motion information is essential for this purpose. Fine textures, having high local pixel variation, tend to cause false detection of motion. Based on hierarchical wavelet analysis, this algorithm provides much better perceptual visual quality and considerably higher PSNR than other motion adaptive deinterlacers as shown. In addition, a recursive 3-field motion detection algorithm is also proposed to achieve better performance than the traditional 2-field motion detection algorithm with little memory overhead.

  • Fuzzy Rule and Bayesian Network Based Line Interpolation for Video Deinterlacing

    Gwanggil JEON  Jechang JEONG  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E90-B No:6
      Page(s):
    1495-1507

    Detecting edge directions and estimating the exact value of a missing line are currently active research areas in deinterlacing processing. This paper proposes a spatial domain fuzzy rule that is based on an interpolation algorithm, which is suitable to the region with high motion or scene change. The algorithm utilizes fuzzy theory to find the most accurate edge direction with which to interpolate missing pixels. The proposed fuzzy direction oriented interpolator operates by identifying small pixel variations in seven orientations (0°, 45°, -45°, 63°, -63°, 72°, and -72°), while using rules to infer the edge direction. The Bayesian network model selects the most suitable deinterlacing method among three deinterlacing methods and it successively builds approximations of the deinterlaced sequence, by evaluating three methods in each condition. Detection and interpolation results are presented. Experimental results show that the proposed algorithm provides a significant improvement over other existing deinterlacing methods. The proposed algorithm is not only for speed, but also effective for reducing deinterlacing artifacts.

  • Parameter Embedding in Motion-JPEG2000 through ROI for Variable-Coefficient Invertible Deinterlacing

    Jun UCHITA  Shogo MURAMATSU  Takuma ISHIDA  Hisakazu KIKUCHI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E89-D No:11
      Page(s):
    2794-2801

    In this paper, a coefficient-parameter embedding method into Motion-JPEG2000 (MJP2) is proposed for invertible deinterlacing with variable coefficients. Invertible deinterlacing, which the authors have developed before, can be used as a preprocess of frame-based motion picture codec, such as MJP2, for interlaced videos. When the conventional field-interleaving is used instead, comb-tooth artifacts appear around edges of moving objects. On the other hand, the invertible deinterlacing technique allows us to suppress the comb-tooth artifacts and also guaranties recovery of original pictures. As previous works, the authors have developed a variable coefficient scheme with a motion detector, which realizes adaptability to local characteristics of given pictures. However, when this deinterlacing technique is applied to a video codec, coefficient parameters have to be sent to receivers for original picture recovery. This paper proposes a parameter-embedding technique in MJP2 and constructs a standard stream which consists both of picture data and the parameters. The parameters are embedded into the LH1 component of wavelet transform domain through the ROI (region of interest) function of JPEG2000 without significant loss in the performance of comb-tooth suppression. Some experimental results show the feasibility of our proposed scheme.

  • A Parameter Decimation Technique for Variable-Coefficient Invertible Deinterlacing

    Jun UCHITA  Takuma ISHIDA  Shogo MURAMATSU  Hisakazu KIKUCHI  Tetsuro KUGE  

     
    PAPER

      Vol:
    E87-A No:6
      Page(s):
    1363-1370

    In this paper, a coefficient-parameter reduction method is proposed for invertible deinterlacing with variable coefficients. Invertible deinterlacing, which the authors have developed before, can be used as a preprocess of frame-based motion picture codec, such as Motion-JPEG2000 (MJP2), for interlaced videos. When the conventional field-interleaving is used instead, comb-tooth artifacts appear around edges of moving objects. On the other hand, the invertible deinterlacing technique allows us to suppress the comb-tooth artifacts and also to recover an original picture on demand. As previous works, the authors have developed a variable coefficient scheme with a motion detection filter, which realizes adaptability to local characteristics of given pictures. When applying this deinterlacing technique to an image codec, it is required to send coefficient parameters to receivers for original picture recovery. This work proposes a parameter decimation technique and shows that this reduction approach can be achieved without significant loss of comb-tooth suppression capability and improves the quality at high bit-rate decoding.

  • A Lifting Implementation of Variable-Coefficient Invertible Deinterlacer with Embedded Motion Detector

    Takuma ISHIDA  Tatsuumi SOYAMA  Shogo MURAMATSU  Hisakazu KIKUCHI  Tetsuro KUGE  

     
    PAPER

      Vol:
    E86-A No:8
      Page(s):
    1942-1948

    In this paper, a lifting implementation of variable-coefficient invertible deinterlacer with embedded motion detector is proposed. As previous works, the authors have developed invertible deinterlacing that suppresses comb-tooth artifacts caused by field interleaving for interlaced scanning video, which affect the quality of intraframe-based codec such as Motion-JPEG2000. To improve the local adaptability for given pictures, its variable-coefficient processing with motion detection has also been proposed so that filters can be changed according to local properties of motion pictures, while maintaining the invertibility. In this paper, it is shown that the variable-coefficient invertible deinterlacing can be realized by a lifting-based simple hardware architecture, and motion detector can also be embedded. Both of the motion detection and deinterlacing filters are shared by a special choice of their coefficients, and by adaptive selection of deinterlacing filters. The significance of our proposed architecture is verified by showing synthesis results from the VHDL models. The proposed implementation with embedded motion detector achieves about 28% reduction of the gate count compared with the corresponding separate implementation.

  • Lifting Architecture of Invertible Deinterlacing

    Tatsuumi SOYAMA  Takuma ISHIDA  Shogo MURAMATSU  Hisakazu KIKUCHI  Tetsuro KUGE  

     
    PAPER

      Vol:
    E86-A No:4
      Page(s):
    779-786

    Several lifting implementation techniques for invertible deniterlacing are proposed in this paper. Firstly, the invertible deinterlacing is reviewed, and an efficient implementation is presented. Next, two deinterlacer-embedded lifting architectures of discrete wavelet transforms (DWT) is proposed. Performances are compared among several architectures of deinterlacing with DWT. The performance evaluation includes dual-multiplier and single-multiplier architectures. The number of equivalent gates shows that the deinterlacing-embedded architectures require less resources than the separate implementaion. Our experimental evaluation of the dual-multiplier architecture results in 0.8% increase in the gate count, whereas the separate implementation of deinterlacing and DWT requires 6.1% increase from the normal DWT architecture. For the proposed single-multiplier architecture, the gate count is shown to result in 4.5% increase, while the separate counterpart yields 10.7% increase.