The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] density(275hit)

141-160hit(275hit)

  • Least-Squares Conditional Density Estimation

    Masashi SUGIYAMA  Ichiro TAKEUCHI  Taiji SUZUKI  Takafumi KANAMORI  Hirotaka HACHIYA  Daisuke OKANOHARA  

     
    PAPER-Pattern Recognition

      Vol:
    E93-D No:3
      Page(s):
    583-594

    Estimating the conditional mean of an input-output relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation that is suitable for multi-dimensional continuous variables. The basic idea of the proposed method is to express the conditional density in terms of the density ratio and the ratio is directly estimated without going through density estimation. Experiments using benchmark and robot transition datasets illustrate the usefulness of the proposed approach.

  • A Hybrid ARQ Scheme Based on Rate-Compatible Low-Density Parity-Check Codes by Shortening and Extending

    Toshihiko OKAMURA  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:11
      Page(s):
    2883-2890

    Incremental Redundancy Hybrid ARQ (IR-HARQ) based on rate-compatible punctured low-density parity-check (LDPC) codes can achieve high throughput over a wide range of SNRs. One drawback of such IR-HARQ schemes is high computational complexity of decoding for early transmission at high rates. In order to overcome this problem, a HARQ scheme based on rate-compatible LDPC codes by shortening and extending is presented in this paper. In the HARQ scheme, a high-rate mother code is transmitted at first, and parity-bits of a shortened code are transmitted for early retransmission requests. With a low-complexity decoder of the high-rate mother code, this shortened-code approach would result in low computational complexity of decoding, but it causes smaller length and larger number of shortened codes to be decoded as retransmission repeats. To prevent the resultant degradation of performance and complexity, extending is efficiently applied to the shortened codes after predetermined retransmission-times. A multi-edge type code-design is employed to construct irregular LDPC codes that meet the requirement of the HARQ scheme. Simulation results show that the HARQ scheme can achieve lower computational complexity of decoding than a conventional IR-HARQ scheme with good throughput over a wide range of SNRs.

  • Adaptive Decoding Algorithms for Low-Density Parity-Check Codes over the Binary Erasure Channel

    Gou HOSOYA  Hideki YAGI  Manabu KOBAYASHI  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:10
      Page(s):
    2418-2430

    Two decoding procedures combined with a belief-propagation (BP) decoding algorithm for low-density parity-check codes over the binary erasure channel are presented. These algorithms continue a decoding procedure after the BP decoding algorithm terminates. We derive a condition that our decoding algorithms can correct an erased bit which is uncorrectable by the BP decoding algorithm. We show by simulation results that the performance of our decoding algorithms is enhanced compared with that of the BP decoding algorithm with little increase of the decoding complexity.

  • Complexity-Reducing Algorithm for Serial Scheduled Min-Sum Decoding of LDPC Codes

    Hironori UCHIKAWA  Kohsuke HARADA  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:10
      Page(s):
    2411-2417

    We propose a complexity-reducing algorithm for serial scheduled min-sum decoding that reduces the number of check nodes to process during an iteration. The check nodes to skip are chosen based on the reliability, a syndrome and a log-likelihood-ratio (LLR) value, of the incoming messages. The proposed algorithm is evaluated by computer simulations and shown to reduce the decoding complexity about 20% compared with a conventional serial scheduled min-sum decoding with small fractional decibel degradation in error correction performance.

  • Computation of Grobner Basis for Systematic Encoding of Generalized Quasi-Cyclic Codes

    Vo TAM VAN  Hajime MATSUI  Seiichi MITA  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:9
      Page(s):
    2345-2359

    Generalized quasi-cyclic (GQC) codes form a wide and useful class of linear codes that includes thoroughly quasi-cyclic codes, finite geometry (FG) low density parity check (LDPC) codes, and Hermitian codes. Although it is known that the systematic encoding of GQC codes is equivalent to the division algorithm in the theory of Grobner basis of modules, there has been no algorithm that computes Grobner basis for all types of GQC codes. In this paper, we propose two algorithms to compute Grobner basis for GQC codes from their parity check matrices; we call them echelon canonical form algorithm and transpose algorithm. Both algorithms require sufficiently small number of finite-field operations with the order of the third power of code-length. Each algorithm has its own characteristic. The first algorithm is composed of elementary methods and is appropriate for low-rate codes. The second algorithm is based on a novel formula and has smaller computational complexity than the first one for high-rate codes with the number of orbits (cyclic parts) less than half of the code length. Moreover, we show that a serial-in serial-out encoder architecture for FG LDPC codes is composed of linear feedback shift registers with the size of the linear order of code-length; to encode a binary codeword of length n, it takes less than 2n adder and 2n memory elements.

  • Robust Channel Order Selection Based on Spectral Matching

    Koji HARADA  Hideaki SAKAI  

     
    PAPER-Communications

      Vol:
    E92-A No:8
      Page(s):
    1898-1904

    In this paper, a new approach to channel order selection of single-input multiple-output (SIMO), finite impulse response (FIR) channels is proposed for blind channel estimation. The approach utilizes cross spectral density (CSD) of the channel outputs, and minimizes the distance between two CSD's, one calculated non-parametrically from the observed output data, and the other calculated from the blindly estimated channel parameters. The CSD criterion is numerically tested on randomly generated SIMO-FIR channels, and shown to be very effective compared to existing channel order selection methods especially under low SNR settings. Blind estimates of the channels with the selected channel order also show superiority of the CSD criterion.

  • Characterizing Intra-Die Spatial Correlation Using Spectral Density Fitting Method

    Qiang FU  Wai-Shing LUK  Jun TAO  Changhao YAN  Xuan ZENG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E92-A No:7
      Page(s):
    1652-1659

    In this paper, a spectral domain method named the SDF (Spectral Density Fitting) method for intra-die spatial correlation function extraction is presented. Based on theoretical analysis of random field, the spectral density, as the spectral domain counterpart of correlation function, is employed to estimate the parameters of the correlation function effectively in the spectral domain. Compared with the existing extraction algorithm in the original spatial domain, the SDF method can obtain the same quality of results in the spectral domain. In actual measurement process, the unavoidable measurement error with arbitrary frequency components would greatly confound the extraction results. A filtering technique is further developed to diminish the high frequency components of the measurement error and recover the data from noise contamination for parameter estimation. Experimental results have shown that the SDF method is practical and stable.

  • Convergence Speed Analysis of Layered Decoding of Block-Type LDPC Codes

    Min-Ho JANG  Beomkyu SHIN  Woo-Myoung PARK  Jong-Seon NO  Dong-Joon SHIN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:7
      Page(s):
    2484-2487

    In this letter, we analyze the convergence speed of layered decoding of block-type low-density parity-check codes and verify that the layered decoding gives faster convergence speed than the sequential decoding with randomly selected check node subsets. Also, it is shown that using more subsets than the maximum variable node degree does not improve the convergence speed.

  • A Distributed Variational Bayesian Algorithm for Density Estimation in Sensor Networks

    Behrooz SAFARINEJADIAN  Mohammad B. MENHAJ  Mehdi KARRARI  

     
    PAPER-Computation and Computational Models

      Vol:
    E92-D No:5
      Page(s):
    1037-1048

    In this paper, the problem of density estimation and clustering in sensor networks is considered. It is assumed that measurements of the sensors can be statistically modeled by a common Gaussian mixture model. This paper develops a distributed variational Bayesian algorithm (DVBA) to estimate the parameters of this model. This algorithm produces an estimate of the density of the sensor data without requiring the data to be transmitted to and processed at a central location. Alternatively, DVBA can be viewed as a distributed processing approach for clustering the sensor data into components corresponding to predominant environmental features sensed by the network. The convergence of the proposed DVBA is then investigated. Finally, to verify the performance of DVBA, we perform several simulations of sensor networks. Simulation results are very promising.

  • A Biologically Inspired Self-Adaptation of Replica Density Control

    Tomoko IZUMI  Taisuke IZUMI  Fukuhito OOSHITA  Hirotsugu KAKUGAWA  Toshimitsu MASUZAWA  

     
    PAPER-Distributed Cooperation and Agents

      Vol:
    E92-D No:5
      Page(s):
    1125-1136

    Biologically-inspired approaches are one of the most promising approaches to realize highly-adaptive distributed systems. Biological systems inherently have self-* properties, such as self-stabilization, self-adaptation, self-configuration, self-optimization and self-healing. Thus, the application of biological systems into distributed systems has attracted a lot of attention recently. In this paper, we present one successful result of bio-inspired approach: we propose distributed algorithms for resource replication inspired by the single species population model. Resource replication is a crucial technique for improving system performance of distributed applications with shared resources. In systems using resource replication, generally, a larger number of replicas lead to shorter time to reach a replica of a requested resource but consume more storage of the hosts. Therefore, it is indispensable to adjust the number of replicas appropriately for the resource sharing application. This paper considers the problem for controlling the densities of replicas adaptively in dynamic networks and proposes two bio-inspired distributed algorithms for the problem. In the first algorithm, we try to control the replica density for a single resource. However, in a system where multiple resources coexist, the algorithm needs high network cost and the exact knowledge at each node about all resources in the network. In the second algorithm, the densities of all resources are controlled by the single algorithm without high network cost and the exact knowledge about all resources. This paper shows by simulations that these two algorithms realize self-adaptation of the replica density in dynamic networks.

  • Scalability of Vertical MOSFETs in Sub-10 nm Generation and Its Mechanism

    Tetsuo ENDOH  Yuto NORIFUSA  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    594-597

    In this paper, the device performances of sub-10 nm Vertical MOSFETs are investigated. One of the drawbacks of conventional planar MOSFETs is that in the sub-10 nm generation, its cutoff leakage current increases due to the short channel effects, but even more, its driving current decreases due to the quantum mechanical confinement effects such as the sub-band effect and the depletion of the inversion layer. It is shown for the first time that by downscaling the silicon pillar diameter from 20 nm to 4 nm, the Vertical MOSFET increases its driving current per footprint to about 2 times and suppresses its total cutoff leakage current per footprint to less than 1/60 at the same time. Moreover, the mechanisms of these improvements of Vertical MOSFET performances are clarified. The results of this work show that Vertical MOSFETs can overcome the drawbacks of conventional planar MOSFETs and achieve the high device performance through the sub-10 nm generation.

  • Simulation of Tunneling Contact Resistivity in Non-polar AlGaN/GaN Heterostructures

    Hironari CHIKAOKA  Yoichi TAKAKUWA  Kenji SHIOJIMA  Masaaki KUZUHARA  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    691-695

    We have evaluated the tunneling contact resistivity based on numerical calculation of tunneling current density across an AlGaN barrier layer in non-polar AlGaN/GaN heterostructures. In order to reduce the tunneling contact resistivity, we have introduced an n+-AlXGa1 - XN layer between an n +-GaN cap layer and an i-AlGaN barrier layer. The tunneling contact resistivity has been optimized by varying Al composition and donor concentration in n+-AlXGa1-XN. Simulation results show that the tunneling contact resistivity can be improved by as large as 4 orders of magnitude, compared to the standard AlGaN/GaN heterostructure.

  • A Partial IR Hybrid ARQ Scheme Using Rate-Compatible Punctured LDPC Codes in an HSDPA System

    Chang-Rae JEONG  Hyo-Yol PARK  Kwang-Soon KIM  Keum-Chan WHANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:2
      Page(s):
    604-607

    In this paper, an efficient partial incremental redundancy (P-IR) scheme is proposed for an H-ARQ using block type low density parity check (B-LDPC) codes. The performance of the proposed P-IR scheme is evaluated in an HSDPA system using IEEE 802.16e B-LDPC codes. Simulation results show that the proposed H-ARQ using IEEE 802.16e B-LDPC codes outperforms the H-ARQ using 3GPP turbo codes.

  • Fingerprinting Codes for Multimedia Data against Averaging Attack

    Hideki YAGI  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Application

      Vol:
    E92-A No:1
      Page(s):
    207-216

    Code construction for digital fingerprinting, which is a copyright protection technique for multimedia, is considered. Digital fingerprinting should deter collusion attacks, where several fingerprinted copies of the same content are mixed to disturb their fingerprints. In this paper, we consider the averaging attack, which is known to be effective for multimedia fingerprinting with the spread spectrum technique. We propose new methods for constructing fingerprinting codes to increase the coding rate of conventional fingerprinting codes, while they guarantee to identify the same number of colluders. Due to the new fingerprinting codes, the system can deal with a larger number of users to supply digital contents.

  • The Necessary and Sufficient Condition of a Class of Quasi-Cyclic LDPC Codes without Girth Four

    Ying ZHAO  Yang XIAO  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:1
      Page(s):
    306-309

    This letter presents a necessary and sufficient condition for a class of quasi-cyclic low-density parity-check (QC LDPC) codes without girth four. Girth-four property of a class of QC LDPC codes is investigated. Good QC LDPC codes without girth four can be constructed by selecting proper shifting factors according to the proposed theorems. Examples are provided to verify the theorems. The simulation results show that the QC LDPC codes without girth four achieve a better BER performance compared with that of randomly constructed LDPC codes.

  • A Novel View of Color-Based Visual Tracker Using Principal Component Analysis

    Kiyoshi NISHIYAMA  Xin LU  

     
    LETTER-Vision

      Vol:
    E91-A No:12
      Page(s):
    3843-3848

    An extension of the traditional color-based visual tracker, i.e., the continuously adaptive mean shift tracker, is given for improving the convenience and generality of the color-based tracker. This is achieved by introducing a probability density function for pixels based on the hue histogram of object. As its merits, the direction and size of the tracked object are easily derived by the principle component analysis (PCA), and its extension to three-dimensional case becomes straightforward.

  • Reduced Congestion Queuing: QoS Support for Optimizing Base Station Layout in Multihop Wireless Networks

    Akira TANAKA  Susumu YOSHIDA  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E91-B No:11
      Page(s):
    3779-3783

    A QoS support technique for easily minimizing delay in multihop wireless networks is proposed. Using a priority queue operation that reduces delays overall, the proposed technique, Reduced Congestion Queuing (RCQ), solves problems peculiar to multihops. By adding RCQ to a multihop system, base station or access point density and cost can be more effectively curtailed than by simply applying multihops to a cellular network or wireless LAN because RCQ expands the multihop service area. Due to its simplicity, the proposed technique can be used in a wide range of applications, including VoIP.

  • Back- and Front-Interface Trap Densities Evaluation and Stress Effect of Poly-Si TFT

    Kenichi TAKATORI  Hideki ASADA  Setsuo KANEKO  

     
    INVITED PAPER

      Vol:
    E91-C No:10
      Page(s):
    1564-1569

    The polycrystalline silicon (poly-Si) TFT has two insulator interfaces between the polycrystalline silicon and front and back insulators. These interfaces have trap states, which affect the characteristics of poly-Si TFT. In the silicon-on-insulator (SOI) technology area, using the dual-gated, fully-depleted SOI MOSFET under the depleted back-channel condition, the back-interface trap density can be calculated through the front-channel threshold voltage and film thicknesses. The front-interface trap density is also evaluated changing the roles of both gates. This evaluation method for front- and back- interface trap densities is called the threshold-voltage method. To apply this threshold-voltage method to the "medium-thickness" poly-Si TFT, of which the channel is not fully depleted in normal single gate bias operation, the biases for both front and back gates are controlled to realize full depletion. Under the fully-depleted condition, the front- or back- threshold voltage of poly-Si TFT is carefully extracted by the second-derivative method changing back- and front- gate biases. We evaluated the front- and back- interface trap densities not only for normal operation but also under stress. To evaluate the bias and temperature stress effect, we used two types of samples, which are made by different processes. The evaluated front- and back- interface trap densities for both samples in initial state are around 51011 to 1.31012 cm-2eV-1, which are almost the same as the reported values. Applying bias and temperature stress shows the variation of these interface-trap densities. Samples with large shifts of the front-channel threshold voltage show large trap density variation. On the other hand, samples with small threshold voltage shifts show small trap density variation. The variation of the back-interface trap density during the stress application showed a correlation to the front-channel threshold voltage shift.

  • Density Evolution Analysis of Robustness for LDPC Codes over the Gilbert-Elliott Channel

    Manabu KOBAYASHI  Hideki YAGI  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E91-A No:10
      Page(s):
    2754-2764

    In this paper, we analyze the robustness for low-density parity-check (LDPC) codes over the Gilbert-Elliott (GE) channel. For this purpose we propose a density evolution method for the case where LDPC decoder uses the mismatched parameters for the GE channel. Using this method, we derive the region of tuples of true parameters and mismatched decoding parameters for the GE channel, where the decoding error probability approaches asymptotically to zero.

  • Security of a Class of Knapsack Public-Key Cryptosystems against Low-Density Attack

    Takeshi NASAKO  Yasuyuki MURAKAMI  Masao KASAHARA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:10
      Page(s):
    2889-2892

    In 2003, Kobayashi et al. proposed a new class of knapsack public-key cryptosystems over Gaussian integer ring. This scheme using two-sequences as the public key. In 2005, Sakamoto and Hayashi proposed an improved version of Kobayashi's scheme. In this paper, we propose the knapsack PKC using l-sequences as the public key and present the low-density attack on it. We have described Schemes R and G for l=2, in which the public keys are constructed over rational integer ring and over Gaussian integer ring, respectively. We discusses on the difference of the security against the low-density attack. We show that the security levels of Schemes R and G differ only slightly.

141-160hit(275hit)