Masayuki MATSUMOTO Akiyoshi HOSOKAWA Satoru KITAMURA Dai WATANABE Atsushi KAWABATA
This paper introduces a new digital ATC (Automatic Train Control device) system. In the current ATC, the central ATC logic device calculates permissive speed of each blocking section and controls speed of all trains. On the other hand, in the new digital ATC, the central logic controller calculates each position to which a train can move safely, and sends the information on positions to all trains. On each train, the on-board equipment calculates an appropriate braking pattern with the information, and controls velocity of the train. That is, in the new system, the device on each train autonomously calculates permissive speed of that train. These special features realize ideal speed control of each train making full use of its performance for acceleration and deceleration, which in turns allows high-density train operations.
Kiyoko KATAYANAGI Yasuyuki MURAKAMI Masao KASAHARA
Recently, Kasahara and Murakami proposed new product-sum public-key cryptosystems using the Chinese remainder theorem as the trapdoor. We proposed 'Yaezakura' as the high-density product-sum PKC applying the method using the reduced bases. In this paper, we propose another high-density scheme with the Chinese remainder theorem trapdoor using the message extension. We also show that the proposed scheme is invulnerable to the low-density attack. In the proposed scheme, the sender can freely select the positions of the dummy messages.
Daisuke SUZUKI Yasuyuki MURAKAMI Ryuichi SAKAI Masao KASAHARA
The encryption and the decryption of the product-sum type public key cryptosystems can be performed extremely fast. However, when the density is low, the cryptosystem should be broken by the low-density attack. In this paper, we propose a new class of the product-sum type public key cryptosystems based on the reduced bases, which is invulnerable to the low-density attack.
Eiichi MIYASHITA Kiyoshi KUGA Ryo TAGUCHI Takahito TAMAKI Haruo OKUDA
It is known that amorphous continuous media such as TbFeCo have extremely low noise characteristics because of the structure of the continuous grainless medium. There is great interest in the use of amorphous media in magnetic recording. This study investigated the recording characteristics of the amorphous continuous medium by computer simulation using the Landau-Lifshitz-Gilbert equation. It was shown that the transition of the continuous medium is very sharp and the noise level very low. It was also shown that the recorded magnetization patterns of the continuous medium are distinct at the high recording density of 380 Gbit/inch2. We concluded that the continuous medium has great potential for use in ultra-high density recording.
Yasuhiro MURAYAMA Kiyoshi IGARASHI Donald D. RICE Brenton J. WATKINS Richard L. COLLINS Kohei MIZUTANI Yoshinobu SAITO Shoji KAINUMA
MF (medium frequency) radars (MFR) are powerful tools for understanding the upper atmosphere, by measuring horizontal wind velocity and electron density. This article introduces three MFR systems, two in Japan, Yamagawa (31.20N, 130.62E) and Wakkanai (45.36N, 141.81E) radars, and one at Poker Flat, Alaska (65.1N, 147.5W). Experimental techniques, and their observed results are briefly shown. Horizontal wind velocity was observed by those MFRs, in height ranges of 60-100 km (day) and 80-100 km (night) at Yamagawa and Wakkanai, while the data coverage is unusually low, >54 km (day) and >68 km (night), at Poker Flat. Comparison of MFR winds with temperature observed by a collocated Rayleigh lidar at Poker Flat shows consistency of those two instrument results in terms of atmospheric wave theory, implying validity of MFR data at such low altitudes. Electron density results at Poker Flat agree reasonably with International Reference Ionosphere model values at 74-84 km, and agree well with variation of cosmic noise absorption by the Poker Flat imaging riometer, suggesting valid electron density estimation by MFR at least below 80-85 km.
Akihiro MINAGAWA Norio TAGAWA Tadashi MORIYA Toshiyuki GOTOH
In conventional methods for detecting vanishing points and vanishing lines, the observed feature points are clustered into collections that represent different lines. The multiple lines are then detected and the vanishing points are detected as points of intersection of the lines. The vanishing line is then detected based on the points of intersection. However, for the purpose of optimization, these processes should be integrated and be achieved simultaneously. In the present paper, we assume that the observed noise model for the feature points is a two-dimensional Gaussian mixture and define the likelihood function, including obvious vanishing points and a vanishing line parameters. As a result, the above described simultaneous detection can be formulated as a maximum likelihood estimation problem. In addition, an iterative computation method for achieving this estimation is proposed based on the EM (Expectation Maximization) algorithm. The proposed method involves new techniques by which stable convergence is achieved and computational cost is reduced. The effectiveness of the proposed method that includes these techniques can be confirmed by computer simulations and real images.
Masaru KURAMOTO A. Atsushi YAMAGUCHI Akira USUI Masashi MIZUTA
Continuous-wave operation at room-tempera-ture has been demonstrated for InGaN multi-quantum-well (MQW) laser diodes (LDs) grown on FIELO GaN substrates with a backside n-contact. This was made possible by introducing important new concept of reducing threading dislocations that occur during the growth of the GaN substrates. We found that InGaN active layers grown on FIELO GaN are superior to those grown on conventional sapphire substrates in terms of their growth mode and the resultant In compositional fluctuation. The fabricated laser diode shows the threshold current, the threshold current density and the threshold voltage were 36 mA, 5.4 kA/cm2 and 7.5 V, respectively, with the lasing wavelength of 412 nm and internal quantum efficiency as high as 98%.
In this paper, we propose a method for detecting conserved domains from a set of amino acid sequences that belong to a protein family. This method detects the domains as follows: first, generate fixed-length subsequences from the sequences; second, construct a weighted graph that connects any two of the subsequences (vertices) having higher similarity than a pre-defined threshold; third, search for the maximum-density subgraph for each connected component of the graph; finally, explore conserved domains in the sequences by combining the results of the previous step. From the performance results obtained by applying the method to several protein families that have complex conserved domains, we found that our method was able to detect those domains even though some domains were weakly conserved.
Zhen WANG Yoshinori UZAWA Akira KAWAKAMI
We report on progress in the development of high current density NbN/AlN/NbN tunnel junctions for application as submillimeter wave SIS mixers. A ultra-high current density up to 120 kA/cm2, roughly two orders of magnitude larger than any reported results for all-NbN tunnel junctions, was achieved in the junctions. The magnetic field dependence and temperature dependence of critical supercurrents were measured to investigate the Josephson tunneling behaviour of critical supercurrents in the high-Jc junctions. We have developed a low-noise quasi-optical SIS mixer with the high-current density NbN/AlN/NbN junctions and two-junction tuning circuits which employ Al/SiO/NbN microstriplines. The tuning characteristics of the mixer were investigated by measuring the response in the direct detection mode by using the Fourier Transform Spectrometer (FTS) and measuring the response in the heterodyne detection mode with the standard Y-factor method at frequencies from 670 to 1082 GHz. An uncorrected double sideband receiver noise temperature of 457 K (12hν/kB) was obtained at 783 GHz.
Souichirou HIDAKA Manabu ISHIMOTO Nobuhiro IWASE Keiichi BETSUI Hiroshi INOUE
We investigated the relationship between the film characteristics and the sputtering rate of the MgO protecting layer in AC-PDP. As possible elements for determining the sputtering rate, we considered the density, orientation, and surface morphology. With respect to the orientation, we found that the sputtering rate increased for the sequence of (200) < (220) < (111). However, we noticed that orientation and surface structure are not really decisive factors affecting the sputtering rate; the density of the film is most important.
Jeng-Shyang PAN Jing-Wein WANG
In this paper, a new feature which is characterized by the extrema density of 2-D wavelet frames estimated at the output of the corresponding filter bank is proposed for texture segmentation. With and without feature selection, the discrimination ability of features based on pyramidal and tree-structured decompositions are comparatively studied using the extrema density, energy, and entropy as features, respectively. These comparisons are demonstrated with separable and non-separable wavelets. With the three-, four-, and five-category textured images from Brodatz album, it is observed that most performances with feature selection improve significantly than those without feature selection. In addition, the experimental results show that the extrema density-based measure performs best among the three types of features investigated. A Min-Min method based on genetic algorithms, which is a novel approach with the spatial separation criterion (SPC) as the evaluation function is presented to evaluate the segmentation performance of each subset of selected features. In this work, the SPC is defined as the Euclidean distance within class divided by the Euclidean distance between classes in the spatial domain. It is shown that with feature selection the tree-structured wavelet decomposition based on non-separable wavelet frames has better performances than the tree-structured wavelet decomposition based on separable wavelet frames and pyramidal decomposition based on separable and non-separable wavelet frames in the experiments. Finally, we compare to the segmentation results evaluated with the templates of the textured images and verify the effectiveness of the proposed criterion. Moreover, it is proved that the discriminatory characteristics of features do spread over all subbands from the feature selection vector.
Kagehiro ITOYAMA Takeshi YANOBE
This paper proposed the method as an estimation on the size of discharge spots through observation on traces after the discharge arose in circumstances gases mixed hydrocarbon gas. Namely, the circular carbonaceous deposit and the carbonaceous heap are observed on cathode and anode surface, respectively, after the short gap discharge arises in N2+NO+CH4 gases. The current density, which is the normal conversion current density, is calculated from the size of the trace of discharge and its value is about 1.010-9 A/(cm2 Pa2) in case that the concentration of CH4 is 0.6%. The value is about 1/5 of values that are reported in the former articles and is reasonable one.
Keiichi KANETO Kazuhiro KUDO Yutaka OHMORI Mitsuyoshi ONODA Mitsumasa IWAMOTO
Recent technologies of organic film devices are reviewed. New technologies of fabrication and characterization of organic thin films, electro-mechanical conversion materials, and applications for electrical and optical devices are discussed. In this review paper, especially organic light emitting diodes, tunneling junctions using polyimide Langmuir-Blodgett films, tunneling spectroscopy and high-density recording, plastic actuators using conducting polymers, molecular self-assembly process for fabricating organic thin film devices are reviewed.
Masahiro YANAGISAWA Akinobu SATO Ken AJIKI
Contact recording systems have been studied for future magnetic recording disks with a high recording density. Tribological key technologies for ultra-low spacing and high wear performance are required for the contact systems. Particularly, a liquid lubrication system plays an important roll for reducing a mechanical spacing and improving wear performances. However, a lubrication design concept for contact recording systems is not established. In this study, molecular design of lubricants for contact systems will be discussed from a viewpoint of bouncing and wear behaviors. As a result, a minimum bouncing height of 3 nm and a high wear performance were obtained for ion-etched contact sliders by the optimization of design parameters, i. e. pad design and lubricant material.
An analysis is carried out about the reflection influence on the microwave attenuation measurement for moisture content determination. A new method taking into account the reflection influence is proposed and it is proved valid by the experiment results. Using this method, the density dependence of the attenuation is measured and the measured data can be fitted well by a straight line passing through the origin. Therefore, the attenuation per unit density and propagation distance is a function which depends only on the moisture content and the function is useful to the determination of the moisture content.
Zhen WANG Yoshinori UZAWA Akira KAWAKAMI
We report on progress in the development of high-current-density all-NbN tunnel junctions for application as submillimeter wave SIS mixers. A very high current density up to 54 kA/cm2, roughly an order of magnitude larger than any reported results for all-NbN tunnel junctions, was achieved in the junctions with a thin aluminum nitride (AIN) tunnel barrier. Even though the junctions have a very high current density, they showed high-quality junction characteristics with a large gap voltage, sharp quasipartical current rise, and small subgap leakage current. The junctions also exhibited good Josephson tunneling behavior, excellent terahertz response, and sensitive heterodyne mixing properties. NbN/AIN/NbN tunnel junctions were integrated with a NbN thin-film antenna to investigate the terahertz responses and the heterodyne mixing properties in a quasioptical mixer testing system. Photon-assisted tunneling steps were clearly observed on the I-V curve with irradiation up to 1 THz, and low-noise heterodyne mixing was demonstrated in the 300-GHz band.
Since the introduction of magnetoresistive (MR) heads, the areal density of hard disk drives (HDDs) has been increasing at a rate of 60% a year, and has now reached 1.4 Gb/sq. in. The data rate has also been increasing at a rate of 40% or more, and this has recently become a key factor in the ability of multimedia applications to transfer stored data rapidly from the HDD to the PC or workstation. Currently, data rates of around 150 Mb/sec are being implemented in products. In this study, key technologies for increasing both the areal density and the data rate of HDDs are proposed. If they are implemented, an areal density of around 10 Gb/sq. in. and a data rate of 200 Mb/sec or more can be achieved.
Noboru NAKASAKO Mitsuo OHTA Yasuo MITANI
In this paper, a new trial for the signal processing is proposed along the same line as a previous study on the extended regression analysis based on the Bayes' theorem. This method enables us to estimate a response probability property of complicated systems in an actual case when observation values of the output response are roughly observed due to the quantization mechanism of measuring equipment. More concretely, the main purpose of this research is to find the statistics of the joint probability density function before a level quantization operation which reflects every proper correlation informations between the system input and the output fluctuations. Then, the output probability distribution for another kind of input is predicted by using the estimated regression relationship. Finally, the effectiveness of the proposed method is experimentally confirmed by applying it to the actually observed input-output data of the acoustic system.
Yevgeny V.MAMONTOV Magnus WILLANDER
This work presents a further development of the approach to modelling thermal (i.e. carrier-velocity-fluctuation) noise in semiconductor devices proposed in papers by the present authors. The basic idea of the approach is to apply classical theory of Ito's stochastic differential equations (SDEs) and stochastic diffusion processes to describe noise in devices and circuits. This innovative combination enables to form consistent mathematical basis of the noise research and involve a great variety of results and methods of the well-known mathematical theory in device/circuit design. The above combination also makes our approach completely different, on the one hand, from standard engineering formulae which are not associated with any consistent mathematical modelling and, on the other hand, from the treatments in theoretical physics which are not aimed at device/circuit models and design. (Both these directions are discussed in more detail in Sect. 1). The present work considers the bipolar transistor compact model derived in Ref. [2] according to theory of Ito's SDEs and stochastic diffusion processes (including celebrated Kolmogorov's equations). It is shown that the compact model is transformed into the Ito SDE system. An iterative method to determine noisy currents as entries of the stationary stochastic process corresponding to the above Ito system is proposed.
MPO optical backplane connectors using multi-fiber push-on plugs (MPO plugs) have been developed. MPO optical backplane connector is a connector connecting a printed board to a backplane using MPO plug. MPO plug is held in the housing with self-retentive mechanism. To get same optical performances as standard MPO connector, precision in dimension and mechanism for appropriate connecting-disconnecting sequence are necessary. We have developed a new backplane housing and printed board housing based on previously reported MU connector. The optical performance is similar to that of MPO connectors.