The search functionality is under construction.

Keyword Search Result

[Keyword] dependable(12hit)

1-12hit
  • Effective Anomaly Detection in Smart Home by Analyzing Sensor Correlations

    Giang-Truong NGUYEN  Van-Quyet NGUYEN  Van-Hau NGUYEN  Kyungbaek KIM  

     
    LETTER-Dependable Computing

      Pubricized:
    2020/11/09
      Vol:
    E104-D No:2
      Page(s):
    332-336

    In a smart home environment, sensors generate events whenever activities of residents are captured. However, due to some factors, abnormal events could be generated, which are technically reasonable but contradict to real-world activities. To detect abnormal events, a number of methods has been introduced, e.g., clustering-based or snapshot-based approaches. However, they have limitations to deal with complicated anomalies which occur with large number of events and blended within normal sensor readings. In this paper, we propose a novel method of detecting sensor anomalies under smart home environment by considering spatial correlation and dependable correlation between sensors. Initially, we pre-calculate these correlations of every pair of two sensors to discover their relations. Then, from periodic sensor readings, if it has any unmatched relations to the pre-computed ones, an anomaly is detected on the correlated sensor. Through extensive evaluations with real datasets, we show that the proposed method outperforms previous approaches with 20% improvement on detection rate and reasonably low false positive rate.

  • Stochastic Fault-Tolerant Routing in Dual-Cubes

    Junsuk PARK  Nobuhiro SEKI  Keiichi KANEKO  

     
    LETTER-Dependable Computing

      Pubricized:
    2017/05/10
      Vol:
    E100-D No:8
      Page(s):
    1920-1921

    In the topologies for interconnected nodes, it is desirable to have a low degree and a small diameter. For the same number of nodes, a dual-cube topology has almost half the degree compared to a hypercube while increasing the diameter by just one. Hence, it is a promising topology for interconnection networks of massively parallel systems. We propose here a stochastic fault-tolerant routing algorithm to find a non-faulty path from a source node to a destination node in a dual-cube.

  • Node-to-Node Disjoint Paths Problem in Möbius Cubes

    David KOCIK  Keiichi KANEKO  

     
    PAPER-Dependable Computing

      Pubricized:
    2017/04/25
      Vol:
    E100-D No:8
      Page(s):
    1837-1843

    The Möbius cube is a variant of the hypercube. Its advantage is that it can connect the same number of nodes as a hypercube but with almost half the diameter of the hypercube. We propose an algorithm to solve the node-to-node disjoint paths problem in n-Möbius cubes in polynomial-order time of n. We provide a proof of correctness of the algorithm and estimate that the time complexity is O(n2) and the maximum path length is 3n-5.

  • Set-to-Set Disjoint Paths Routing in Torus-Connected Cycles

    Antoine BOSSARD  Keiichi KANEKO  

     
    LETTER-Dependable Computing

      Pubricized:
    2016/08/10
      Vol:
    E99-D No:11
      Page(s):
    2821-2823

    Extending the very popular tori interconnection networks[1]-[3], Torus-Connected Cycles (TCC) have been proposed as a novel network topology for massively parallel systems [5]. Here, the set-to-set disjoint paths routing problem in a TCC is solved. In a TCC(k,n), it is proved that paths of lengths at most kn2+2n can be selected in O(kn2) time.

  • Node-to-Set Disjoint Paths Problem in a Möbius Cube

    David KOCIK  Yuki HIRAI  Keiichi KANEKO  

     
    PAPER-Dependable Computing

      Pubricized:
    2015/12/14
      Vol:
    E99-D No:3
      Page(s):
    708-713

    This paper proposes an algorithm that solves the node-to-set disjoint paths problem in an n-Möbius cube in polynomial-order time of n. It also gives a proof of correctness of the algorithm as well as estimating the time complexity, O(n4), and the maximum path length, 2n-1. A computer experiment is conducted for n=1,2,...,31 to measure the average performance of the algorithm. The results show that the average time complexity is gradually approaching to O(n3) and that the maximum path lengths cannot be attained easily over the range of n in the experiment.

  • Information and Communication Technology and Electric Vehicles – Paving the Way towards a Smart Community Open Access

    Kenichi MASE  

     
    INVITED PAPER

      Vol:
    E95-B No:6
      Page(s):
    1902-1910

    A smart community can be considered an essential component to realize a sustainable, low-carbon, and disaster-tolerant society, thereby providing a base for community inhabitants to lead a simple, healthy, and energy-saving way of life as well as ensuring safety, security, and a high quality-of-life in the community. In particular, a smart community can be essential for senior citizens in an aging society. Smart community enablers such as information and communication technology (ICT) and electric vehicles (EVs) can perform essential roles to realize a smart community. With regard to ICT, the necessity of a dedicated wireless sensor backbone has been identified. With regard to EV, a small-sized EV with one or two seats (Mini-EV) has been identified as an emerging player to support personal daily mobility in an aged society. The Mini-EV may be powered by a solar battery, thereby mitigating vehicular maintenance burden for the elderly. It is essential to realize a dependable ICT network and communication service for a smart community. In the study, we present the concept of trans-locatable design to achieve this goal. The two possible roles of EVs in contributing to a dependable ICT network are highlighted; these include EV charging of the batteries of the base stations in the network, and the creation of a Mini-EV based ad-hoc network that can enable applications such as safe driving assistance and secure neighborhoods.

  • High-Performance Architecture for Concurrent Error Detection for AES Processors

    Takeshi SUGAWARA  Naofumi HOMMA  Takafumi AOKI  Akashi SATOH  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:10
      Page(s):
    1971-1980

    This paper proposes an efficient scheme for concurrent error detection for hardware implementations of the block cipher AES. In the proposed scheme, the circuit component for the round function is divided into two stages, which are used alternately for encryption (or decryption) and error checking in a pipeline. The proposed scheme has a limited overhead with respect to size and speed for the following reasons. Firstly, the need for a double number of clock cycles is eliminated by virtue of the reduced critical path. Secondly, the scheme only requires minimal additional circuitry for error detection since the detection is performed by the remaining encryption (or decryption) components within the pipeline. AES hardware with the proposed scheme was designed and synthesized by using 90-nm CMOS standard cell library with various constraints. As a result, the proposed circuit achieved 1.66 Gbps @ 12.9 Kgates for the compact version and 4.22 Gbps @ 30.7 Kgates for the high-speed version. These performance characteristics are comparable to those of a basic AES circuit without error detection, where the overhead of the proposed scheme is estimated to be 14.5% at maximum. The proposed circuit was fabricated in the form of a chip, and its error detection performance was evaluated through experiments. The chip was tested with respect to fault injection by using clock glitch, and the proposed scheme successfully detected and reacted to all introduced errors.

  • Towards the Engineering of Dependable P2P-Based Network Control -- The Case of Timely Routing Control Messages

    Kurt TUTSCHKU  Akihiro NAKAO  

     
    PAPER

      Vol:
    E92-B No:1
      Page(s):
    17-25

    This paper introduces a methodology for engineering best-effort P2P algorithms into dependable P2P-based network control mechanism. The proposed method is built upon an iterative approach consisting of improving the original P2P algorithm by appropriate mechanisms and of thorough performance assessment with respect to dependability measures. The potential of the methodology is outlined by the example of timely routing control for vertical handover in B3G wireless networks. In detail, the well-known Pastry and CAN algorithms are enhanced to include locality. By showing how to combine algorithmic enhancements with performance indicators, this case study paves the way for future engineering of dependable network control mechanisms through P2P algorithms.

  • Autonomous Repair Fault Tolerant Dynamic Reconfigurable Device

    Kentaro NAKAHARA  Shin'ichi KOUYAMA  Tomonori IZUMI  Hiroyuki OCHI  Yukihiro NAKAMURA  

     
    PAPER-Embedded, Real-Time and Reconfigurable Systems

      Vol:
    E91-A No:12
      Page(s):
    3612-3621

    Recently, reconfigurable devices are widely used in the fields of small amount production and trial production. They are also expected to be utilized in such mission-critical fields as space development, because system update and pseudo-repair can be achieved remotely by reconfiguring. However, in the case of conventional reconfigurable devices, configuration memory upsets caused by radiation and alpha particles reconfigure the device unpredictably, resulting in fatal system failures. Therefore, a reconfigurable device with high fault-tolerance against configuration upsets is required. In this paper, we propose an architecture of a fault-tolerant reconfigurable device that autonomously repairs configuration upsets by itself without interrupting system operations. The device consists of a 2D array of "Autonomous-Repair Cells" each of which repairs its upsets autonomously. The architecture has a scalability in fault tolerance; a finer-grained Autonomous-Repair Cell provides higher fault-tolerance. To determine the architecture, we analyze four autonomous repair techniques of the cell experimentally. Then, two autonomous repair techniques, simple multiplexing (S.M.) and memory multiplexing (M.M.), are applied; the former to programmable logics and the latter to cell-to-cell routing resources. Through evaluation, we show that proposed device achieves more than 10 years average lifetime against configuration upsets even in a severe situation such as a satellite orbit.

  • Ultra Dependable Processor

    Shuichi SAKAI  Masahiro GOSHIMA  Hidetsugu IRIE  

     
    INVITED PAPER

      Vol:
    E91-C No:9
      Page(s):
    1386-1393

    This paper presents the processor architecture which provides much higher level dependability than the current ones. The features of it are: (1) fault tolerance and secure processing are integrated into a modern superscalar VLSI processor; (2) light-weight effective soft-error tolerant mechanisms are proposed and evaluated; (3) timing errors on random logic and registers are prevented by low-overhead mechanisms; (4) program behavior is hidden from the outer world by proposed address translation methods; (5) information leakage can be avoided by attaching policy tags for all data and monitoring them for each instruction execution; (6) injection attacks are avoided with much higher accuracy than the current systems, by providing tag trackings; (7) the overall structure of the dependable processor is proposed with a dependability manager which controls the detection of illegal conditions and recovers to the normal mode; and (8) an FPGA-based testbed system is developed where the system clock and the voltage are intentionally varied for experiment. The paper presents the fundamental scheme for the dependability, elemental technologies for dependability and the whole architecture of the ultra dependable processor. After showing them, the paper concludes with future works.

  • Fault Tolerant Dynamic Reconfigurable Device Based on EDAC with Rollback

    Kentaro NAKAHARA  Shin'ichi KOUYAMA  Tomonori IZUMI  Hiroyuki OCHI  Yukihiro NAKAMURA  

     
    PAPER-VLSI Architecture

      Vol:
    E89-A No:12
      Page(s):
    3652-3658

    Reconfigurable devices are expected to be utilized in such mission-critical fields as space development and undersea cables, because system updates and pseudo-repair can be achieved remotely by reconfiguring. However, conventional reconfigurable devices suffer from memory-bit upset caused by charged particles in space which results in fatal system problems. In this paper, we propose an architecture of a fault-tolerant reconfigurable device. The proposed device is divided into "autonomous-repair cells" with embedded control circuits. The autonomous-repair cell proposed in this paper is based on error detection and correction (EDAC) and uses hardware and time redundancy. From evaluation, it is shown that the proposed architecture achieves sufficient reliability against configuration memory upset. Trade-offs between performance and cost are also analyzed.

  • DRIC: Dependable Grid Computing Framework

    Hai JIN  Xuanhua SHI  Weizhong QIANG  Deqing ZOU  

     
    PAPER-Grid Computing

      Vol:
    E89-D No:2
      Page(s):
    612-623

    Grid computing presents a new trend to distributed and Internet computing to coordinate large scale resources sharing and problem solving in dynamic, multi-institutional virtual organizations. Due to the diverse failures and error conditions in the grid environments, developing, deploying, and executing applications over the grid is a challenge, thus dependability is a key factor for grid computing. This paper presents a dependable grid computing framework, called DRIC, to provide an adaptive failure detection service and a policy-based failure handling mechanism. The failure detection service in DRIC is adaptive to users' QoS requirements and system conditions, and the failure-handling mechanism can be set optimized based on decision-making method by a policy engine. The performance evaluation results show that this framework is scalable, high efficiency and low overhead.