The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] equalization(218hit)

181-200hit(218hit)

  • Novel Gain-Slope Free Erbium-Doped Fiber Amplifier for L-Band Using Thulium-Doped Fiber

    Tomoharu KITABAYASHI  Tetsuya SAKAI  Akira WADA  

     
    PAPER

      Vol:
    E85-C No:4
      Page(s):
    940-944

    In modern high-capacity wavelength division multiplexing (WDM) transmission systems, there is increasing demand for large transmission capacity. To achieve this purpose, an L-band (1565-1625 nm) erbium-doped fiber amplifier (EDFA) is very effective method because the conventional silica-based EDF can be used. In EDFAs that used in WDM transmission systems, the gain flatness of EDFA is very important. A passive gain equalizer flattens the gain profile of EDFA. But the gain flatness in L-band deteriorates due to dynamic gain-tilt (DGT) and temperature gain-tilt (TGT) when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we propose an active gain-slope compensation technique for the L-band EDFA using a thulium-doped fiber (TDF). The EDFA actively gain-slope compensated by the TDF compensator keeps the gain profile constant for the wide input power range of more than 8 dB, a wide temperature range of 65 without gain-tilt in a wavelength band between 1575 nm and 1610 nm. Furthermore, the EDFA keeps a low noise figure of less than 7.5 dB.

  • Turbo Equalization of GMSK Signals Using Noncoherent Frequency Detection

    Tomoya OKADA  Yasunori IWANAMI  

     
    PAPER-Digital Transmission

      Vol:
    E85-C No:3
      Page(s):
    473-479

    In this paper, we propose a turbo equalization scheme for GMSK signals with frequency detection. Although the channel is AWGN, there exists severe ISI (Inter-Symbol Interference) in the received signal due to the premodulation Gaussian baseband filter in the transmitter as well as the narrowband IF filter in the receiver. We regard these two filters as a real number inner convolutional encoder. The ISI equalizer for this inner encoder and the outer decoder for a RSC (Recursive Systematic Convolutional) code, are connected through a random (de-)interleaver. These inner and outer decoders generate the reliability values in terms of LLR (Log Likelihood Ratio), using MAP or SOVA algorithm with SISO (soft input and soft output). Moreover iterative decoding with the limitation of LLR values are employed between two decoders to achieve a turbo equalization for GMSK frequency detection. Through computer simulations, the proposed system shows the BER=10-5 at Eb/N0=8.8 dB, when we take BT=0.6 (IF filter bandwidth multiplied by symbol duration) with the iteration number of 3. This means 3.1 dB improvement compared with the conventional scheme where the inner ISI equalizer is concatenated with the outer hard decision Viterbi decoder.

  • Extracted-Clock Power Level Monitoring Scheme for Automatic Dispersion Equalization in High-Speed Optical Transmission Systems

    Akihide SANO  Yutaka MIYAMOTO  Tomoyoshi KATAOKA  Masahito TOMIZAWA  Kazuo HAGIMOTO  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E84-B No:11
      Page(s):
    2907-2914

    This paper proposes an automatic dispersion equalization system using extracted clock power monitoring in order to facilitate the field installation of high-speed time-division multiplexed (TDM) systems over existing fiber cables. The proposed scheme adjusts the dispersion of a variable-dispersion equalizer so as to maximize the extracted clock power level. This scheme has a simple configuration, needs no communication channel between the transmitter and the receiver, and is sensitive to parameters such as initial chirping and fiber input power. The clock power dependence on the fiber dispersion is theoretically analyzed assuming that the return-to-zero (RZ) format is used and that pulse broadening is small compared to the bit duration. We show that the clock power is maximized when the dispersion-induced waveform distortion is minimized. Numerical simulations show that the proposed scheme is effective with the non-return-to-zero (NRZ) format and for the case that the optimum total dispersion deviates from zero due to initial and/or self-phase modulation (SPM)-induced chirping. The operation of the proposed automatic equalization system is experimentally confirmed in 20-Gbit/s transmission using both RZ and NRZ formats. Moreover, a 40-Gbit/s transmission experiment over 200 km of dispersion-shifted fiber (DSF) is successfully demonstrated using the proposed equalization scheme.

  • Detection of Nonlinearly Distorted M-ary QAM Signals Using Self-Organizing Map

    Xiaoqiu WANG  Hua LIN  Jianming LU  Takashi YAHAGI  

     
    PAPER-Applications of Signal Processing

      Vol:
    E84-A No:8
      Page(s):
    1969-1976

    Detection of nonlinearly distorted signals is an essential problem in telecommunications. Recently, neural network combined conventional equalizer has been used to improve the performance especially in compensating for nonlinear distortions. In this paper, the self-organizing map (SOM) combined with the conventional symbol-by-symbol detector is used as an adaptive detector after the output of the decision feedback equalizer (DFE), which updates the decision levels to follow up the nonlinear distortions. In the proposed scheme, we use the box distance to define the neighborhood of the winning neuron of the SOM algorithm. The error performance has been investigated in both 16 QAM and 64 QAM systems with nonlinear distortions. Simulation results have shown that the system performance is remarkably improved by using SOM detector compared with the conventional DFE scheme.

  • Active Gain-Slope Compensation of EDFA Using Thulium-Doped Fiber as Saturable Absorber

    Tomoharu KITABAYASHI  Takuya AIZAWA  Tetsuya SAKAI  Akira WADA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    605-609

    In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.

  • A Commutating Decision Feedback Equalizer (CDFE) for Digital Mobile Radios

    Sukvasant TANTIKOVIT  Asrar U. H. SHEIKH  

     
    LETTER-Wireless Communication Technology

      Vol:
    E84-B No:5
      Page(s):
    1443-1446

    We propose a new structure of decision feedback adaptive equalizer (DFE) suitable for use in mobile radio systems. The proposed structure named Commutating Decision Feedback Equalizer (CDFE) has two DFEs that operate in a commutating fashion; the two DFEs commutate between training and equalization. Such a commutating operation effectively lengthens the equalizer tracking period over time variant channels. Thus, the CDFE has a superior performance over the conventional DFE in fading channels. Simulation results are presented in the paper.

  • Active Gain-Slope Compensation of EDFA Using Thulium-Doped Fiber as Saturable Absorber

    Tomoharu KITABAYASHI  Takuya AIZAWA  Tetsuya SAKAI  Akira WADA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1231-1235

    In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.

  • Combination of Turbo Decoding and Equalization Using Soft-Output Viterbi Algorithm

    Haruo OGIWARA  Naoki TSUKAHARA  

     
    LETTER-Coding Theory

      Vol:
    E83-A No:10
      Page(s):
    1971-1974

    An iterative decoder of turbo code over an inter-symbol interference channel is proposed. A component decoder realizes decoding and equalization simultaneously with the soft-output Viterbi algorithm (SOVA). A decoding algorithm and simulation results are shown.

  • Turbo Equalization for Wireless Cellular Systems

    Jong Il PARK  Yeongyoon CHOI  

     
    LETTER

      Vol:
    E83-A No:6
      Page(s):
    1184-1185

    This paper investigates the turbo equalization techniques for wireless cellular systems. Simulation results over three GSM channel models are presented.

  • High Alumina Co-Doped Silica EDFA and Its Gain-Equalization in Long-Haul WDM Transmission System

    Takao NAITO  Naomasa SHIMOJOH  Takafumi TERAHARA  Toshiki TANAKA  Terumi CHIKAMA  Masuo SUYAMA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E83-B No:4
      Page(s):
    775-781

    In an optical submarine cable transmission system, small size, low consumption power, and high reliability are required for inline repeaters. The structure of the inline repeater should be a simple single stage. The design of erbium doped fiber (EDF) itself is very important for the inline repeater to achieve broad bandwidth, high output power, and low noise figure. We designed and developed high alumina co-doped erbium doped fiber amplifiers (EDFAs) for long-haul, high-capacity WDM transmission systems. We investigated the trade-off relationship between the gain flatness and the output power to optimize the EDF length. We obtained high performance, including a slightly sloped gain flatness of +0.04 dB/nm at 1550 nm, a superior noise figure of 4.7 dB, and a relatively large output power of +11.5 dBm for an EDF length of 5 m using a 1480-nm pumping laser diode. We applied gain-equalizers (GEQs) using Mach-Zehnder type filters with different FSRs to accurately compensate for the EDFAs ' gain-wavelength characteristics. The main GEQs have free-spectral-ranges (FSRs) of 48-nm, which are about 2 times as long as the wavelength difference between a 1558-nm EDFA gain peak and a 1536-nm EDFA gain valley. Using a circulating loop with the above EDFAs and GEQs, we performed the broad wavelength bandwidth. The achieved signal wavelength bandwidth after 5,958-km transmission was 20 nm. We successfully transmitted 700-Gbit/s (66 10.66-Gbit/s) WDM signals over 2,212 km. The combination of high alumina co-doped silica EDFA and large FSR GEQ is attractive for long-haul, high-capacity WDM transmission systems.

  • Low Complexity Adaptive Blind Equalization Using the Frequency Domain Block Constant Modulus Algorithm

    Yoon Gi YANG  Sang Uk LEE  

     
    LETTER-Radio Communication

      Vol:
    E82-B No:10
      Page(s):
    1694-1698

    In this paper, fast algorithms for the CMA (constant modulus algorithm), which is one of the widely used algorithms for blind equalizationi are presented. We propose the FBCMA (frequency domain block CMA) which takes advantage of fast linear convolution in the DFT domain by using the overlap save method. For the FBCMA, a nonlinear error function in the frequency domain is derived using Parseval's relation. Also, an adaptive algorithm in the DFT domain is introduced to adjust the frequency domain filter coefficients. For a block size and filter length of N, the multiplications required for the conventional CMA and proposed FBCMA are on the order of O(N2) and O(N log N), respectively.

  • A Gradient Type Algorithm for Blind System Identification and Equalizer Based on Second Order Statistics

    Yoshito HIGA  Hiroshi OCHI  Shigenori KINJO  Hirohisa YAMAGUCHI  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1544-1551

    In this paper, we propose a new structure of blind equalizer and its cost function. The proposed cost function is a quadratic form and has the unique solution. In addition, the proposed scheme can employ iterative algorithms which achieve less computational complexity and can be easily realized in real time processing. In order to verify the effectiveness of the proposed schemes, several computer simulations including a 64-QAM signal equalization have been shown.

  • Use of the Coaxial-Core Profile in the Erbium-Doped Fiber Amplifier for Self-Regulation of Gain Spectrum

    Jaedeuk LEE  Hugh SONG  Kyunghwan OH  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E82-C No:8
      Page(s):
    1539-1548

    Coaxial-core erbium-doped fiber amplifiers (EDFA's) having a property of self-regulated gain spectrum are developed. The operation of a coaxial-core EDFA is based on the partial separation of the light paths for different wavelength channels in the directionally-coupled waveguides of a coaxial-core geometry. The degree of channel equalization depends on the geometrical and optical parameters of the coaxial-core EDFA and on relative channel power levels. A numerical analysis based on the coupled-mode theory and on the rate equation shows that, under fully optimized conditions, a coaxial-core EDFA provides equalization rates in excess of -0.4 dB per dB of input-power imbalance in the case with two WDM channels. A cascade experiment demonstrates the effect of coaxial-core EDFA's toward channel-power equalization in fiber links with a small number of WDM channels.

  • Use of the Coaxial-Core Profile in the Erbium-Doped Fiber Amplifier for Self-Regulation of Gain Spectrum

    Jaedeuk LEE  Hugh SONG  Kyunghwan OH  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E82-B No:8
      Page(s):
    1273-1282

    Coaxial-core erbium-doped fiber amplifiers (EDFA's) having a property of self-regulated gain spectrum are developed. The operation of a coaxial-core EDFA is based on the partial separation of the light paths for different wavelength channels in the directionally-coupled waveguides of a coaxial-core geometry. The degree of channel equalization depends on the geometrical and optical parameters of the coaxial-core EDFA and on relative channel power levels. A numerical analysis based on the coupled-mode theory and on the rate equation shows that, under fully optimized conditions, a coaxial-core EDFA provides equalization rates in excess of -0.4 dB per dB of input-power imbalance in the case with two WDM channels. A cascade experiment demonstrates the effect of coaxial-core EDFA's toward channel-power equalization in fiber links with a small number of WDM channels.

  • Identification of Transfer Function of Multipath Propagation in Frequency-Domain Delay-Distortion Equalization

    Masami AKAIKE  

     
    PAPER-Propagation and Scattering

      Vol:
    E82-C No:7
      Page(s):
    1267-1272

    The transfer function or impulse response of propagation path is one of the most fundamental and most important quantities for equalizing the distortions cased by multipath propagation. In this paper, precise identification of the transfer function of the propagation path under multipath condition is presented. By use of the least-square method, uncertainty due to white noise is sufficiently eliminated.

  • Blind Channel Equalization and Phase Recovery Using Higher Order Statistics and Eigendecomposition

    Ling CHEN  Hiroji KUSAKA  Masanobu KOMINAMI  

     
    PAPER-Mobile Communication

      Vol:
    E82-B No:7
      Page(s):
    1048-1054

    This study is aimed to explore a fast convergence method of blind equalization using higher order statistics (cumulants). The efforts are focused on deriving new theoretical solutions for blind equalizers rather than investigating practical algorithms. Under the common assumptions for this framework, it is found that the condition for blind equalization is directly associated with an eigenproblem, i. e. the lag coefficients of the equalizer can be obtained from the eigenvectors of a higher order statistics matrix. A method of blind phase recovery is also proposed for QAM systems. Computer simulations show that very fast convergence can be achieved based on the approach.

  • Speech Analysis with Blind Equalization Technique

    Munehiro NAMBA  Yoshihisa ISHIDA  

     
    PAPER

      Vol:
    E82-A No:4
      Page(s):
    564-571

    The conventional linear prediction can be viewed as a constrained blind equalization problem that has gained a lot of interests along with development of telecommunication networks. Because the blind equalization or deconvolution is a general framework of the inverse problem, the reliable and faster algorithm is requested in many applications. This paper proposes an orthogonal wavelet transform domain realization of a blind equalization technique termed as EVA, and presents an application to speech analysis. An orthogonal transformation has no influence to the equalization result in general, but we show that a particular wavelet makes the matrix in EVA nearly lower triangular that promotes the faster convergence in the estimation of maximum eigenvalue and its associate vector in EVA iteration. The experiments with the Japanese vowels show that the the proposed method effectively separates the glottis and vocal tract information, hence is promising for speech analysis.

  • Joint Low-Complexity Blind Equalization, Carrier Recovery, and Timing Recovery with Application to Cable Modem Transmission

    Cheng-I HWANG  David W. LIN  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E82-B No:1
      Page(s):
    120-128

    We present a receiver structure with joint blind equalization, carrier recovery, and timing recovery. The blind equalizer employs a decomposition transversal filtering technique which can reduce the complexity of convolution to about a half. We analyze the performance surface of the equalizer cost function and show that the global minima correspond to perfect equalization. We also derive proper initial tap settings of the equalizer for convergence to the global minima. We describe the timing recovery and the carrier recovery methods employed. And we describe a startup sequence to bring the receiver into full operation. The adaptation algorithms for equalization, carrier recovery, and timing recovery are relatively independent, resulting in good operational stability of the overall receiver. Some simulation results for cable-modem type of transmission are presented.

  • Two Dimensional Equalization Scheme of Orthogonal Coding Multi-Carrier CDMA

    Soichi WATANABE  Takuro SATO  Masakazu SENGOKU  Takeo ABE  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E81-A No:6
      Page(s):
    1079-1088

    This paper describes two dimensional (2D) equalization scheme of orthogonal coding multi-carrier CDMA for reverse link of mobile communication systems. The purpose of the 2D equalization is the reduction of Multiple Access Interference (MAI) which is caused by the random access and the different propagation path from each mobile station. The orthogonal coding multi-carrier CDMA multiplexes all mobile stations' data by Code Division Multiplexing (CDM). The 2D coding scheme spreads a preamble signal at time (in subchannel signals) and frequency (between subchannel signals) domains. The 2D decoding scheme estimates transmission delay time and instantaneous fading frequency from preamble signal for individual mobile stations and compensate the received data using these estimation values to reduce MAI.

  • Combined Transmission System of TCM, Bit-Interleaving and Decision Feedback Equalization for Fading Channel

    Haruo OGIWARA  Michito WASHIZU  

     
    PAPER-Communications/Coded Modulation/Spread Spectrum

      Vol:
    E80-A No:11
      Page(s):
    2155-2161

    Bit-interleaving can enhance performance of a trellis coded modulation system over a fading channel. A combined system with decision feedback equalization is proposed. In the system, TCM decoded symbols are fed back for equalization. To avoid a bad effect of decoding delay, a deinterleaver is utilized effectively. Information sequence is divided into three subsequences and encoded by three encoders. Among the 3 code vectors from the encoders, bits are interleaved and decoding proceeds in parallel. Simulation results show that the proposed system realizes 0.6 dB more coding gain than a symbol interleaved system. A calculation method of a branch metric for decoding is proposed. Performance with the branch metric is shown to be nearly independent from the desired/undesired power ratio of a intersymbol interference channel. An approximate upper bound is analyzed for the proposed system, and the optimum code is searched.

181-200hit(218hit)