The search functionality is under construction.

Keyword Search Result

[Keyword] equalization(217hit)

141-160hit(217hit)

  • Performance Evaluation of Multi-Rate DS-CDMA Using Frequency-Domain Equalization in a Frequency-Selective Fading Channel

    Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E88-B No:3
      Page(s):
    1191-1201

    Joint frequency-domain equalization (FDE) and antenna diversity combining is applied to the reception of multi-rate DS-CDMA signals to achieve the frequency diversity effect while suppressing inter-path interference (IPI) resulting from the asynchronism of different propagation paths. At a receiver, fast Fourier transform (FFT) is applied for FDE and then inverse FFT (IFFT) is used to obtain a frequency-domain equalized DS-CDMA chip sequence for the succeeding despreading operation. An arbitrary spreading factor SF can be used for the given value of FFT window size; an extreme case is the nonspread SC system with SF=1. This property allows a flexible design of multi-rate DS-CDMA systems. Three types of FDE are considered; minimum mean square error (MMSE) equalization, maximal-ratio combining (MRC) equalization and zero-forcing (ZF) equalization. Matched filter bound analysis for achievable BER performance is presented. The improvement in the BER performance in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. First, we consider the single-user case and compare the BER performances achievable with MMSE, MRC and ZF equalizations. How the fading rate and the spreading factor affect the BER performance is also evaluated. Furthermore, the BER performance comparison between FDE and rake combining is presented for various values of SF and also performance comparison between DS-CDMA and SC signal transmissions, both using FDE, is presented. Finally, we extend our evaluation to the multi-user case. Both downlink and uplink are considered and how the BER performances of downlink and uplink differ is discussed.

  • Spatio-Temporal Equalization for Space-Time Block Coded Transmission over Frequency Selective Fading Channel with Co-channel Interference

    Xuan Nam TRAN  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E88-A No:3
      Page(s):
    660-668

    In this paper, we propose a spatio-temporal equalizer for the space-time block coded transmission over the frequency selective fading channels with the presence of co-channel interference (CCI). The proposed equalizer, based on the tapped delay line adaptive array (TDLAA), performs signal equalization and CCI suppression simultaneously using the minimum mean square error (MMSE) method. It is to show that our scheme outperforms the previous two-stage combined adaptive antenna and delayed decision feedback sequence estimator (DDFSE) approach. We also show that performance can be further improved if the synchronization between the preceding and delayed paths is achieved.

  • Study on the OVSF Code Selection for Downlink MC-CDMA

    Takamichi INOUE  Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    499-508

    In downlink MC-CDMA, orthogonal variable spreading factor (OVSF) codes can be used to allow multirate communications while maintaining the orthogonality among the users with different data rates. In this paper, we point out that simple selection of the OVSF codes results in degraded performance. We show that this happens because simple code selection results in power concentration over certain consecutive subcarriers; severe power loss in the received signal occurs when these subcarriers experience a deep fade in a frequency selective fading channel. In addition, we show two effective techniques to avoid the performance degradation: random code selection and frequency interleaving; which technique provides a better performance depends on modulation level, code multiplexing order, and presence of channel coding.

  • Evaluation of MC-CDMA with Frequency Interleaving Technique in Frequency Selective Fading Channel

    Masato FURUDATE  Hiroyasu ISHIKAWA  Toshinori SUZUKI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    443-451

    In the Multi Carrier (MC)-CDMA system, the frequency diversity gain is obtained by its being spread in the frequency domain. The frequency interleaving technique can improve the frequency diversity gain. In this paper, the bit error rate (BER) performance in the MC-CDMA system which adopts the frequency interleaving scheme in the frequency selective fading channel is evaluated by computer simulation. In this simulation, orthogonal restoration combining (ORC) and minimum mean square error combining (MMSEC) are considered as frequency equalization combining techniques. This paper shows that BER performance with the frequency interleaver is better than without it in various environments.

  • Frequency-Domain Pre-Rake Transmission for DSSS/TDD Mobile Communications Systems

    Fumiyuki ADACHI  Kazuaki TAKEDA  Hiromichi TOMEBA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    784-787

    In this Letter, a frequency-domain pre-rake transmission is presented for a direct sequence spread spectrum with time division duplex (DSSS/TDD) system under a frequency-selective fading channel. The mathematical relationship between frequency-domain and time-domain pre-rake transmissions is discussed. It is confirmed by the computer simulation that, similar to the time-domain pre-rake transmission, frequency-domain pre-rake transmission can improve the bit error rate (BER) performance. The frequency-domain pre-rake transmission shows only slight performance degradation compared to the frequency-domain rake reception for large SF.

  • Frequency-Domain Pre-Equalization Transmit Diversity for MC-CDMA Uplink Transmission

    Hiromichi TOMEBA  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    575-584

    Recently, multi-carrier code division multiple access (MC-CDMA) has been attracting much attention for the broadband wireless access in the next generation mobile communications systems. In the case of uplink transmissions, the orthogonality among users' signals is lost since each user's signal goes through different fading channel and hence, multi-access interference (MAI) is produced, thereby significantly degrading the transmission performance compared to the downlink case. The use of frequency-domain equalization at the receiver cannot sufficiently suppress the MAI. In this paper, we propose frequency-domain pre-equalization transmit diversity (FPTD), which employs pre-equalization using multiple transmit antennas with transmit power constraint, in order to transform a frequency-selective channel seen at a receiver close to the frequency-nonselective channel. We theoretically analyze the bit error rate (BER) performance achievable with the proposed FPTD and the analysis is confirmed by computer simulation.

  • Throughput Comparison of Turbo-Coded HARQ in OFDM, MC-CDMA and DS-CDMA with Frequency-Domain Equalization

    Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    664-677

    OFDM, MC-CDMA and DS-CDMA are being researched vigorously as the prospective signaling technique for the next generation mobile communications systems, which will be characterized by the broadband packet technology. With packet transmissions, hybrid ARQ (HARQ) will be inevitable for error control. HARQ with rate compatible punctured turbo (RCPT) codes is one of the promising techniques. Data rate equivalent to the OFDM system can be attained with MC-CDMA and DS-CDMA by assigning all the available codes to the same user resulting in what is commonly referred to as multicode MC-CDMA and multicode DS-CDMA. A rake receiver is used for receiving the DS-CDMA signals. However, recently minimum mean square error frequency-domain equalization (MMSE-FDE) has been proposed for the reception of DS-CDMA signals. In this paper, we introduce RCPT HARQ to DS-CDMA with MMSE-FDE and compare its throughput performance with OFDM, multicode MC-CDMA and multicode DS-CDMA with rake combining. MMSE weight for packet combining is introduced and the soft value generation for turbo coding in MC-CDMA and DS-CDMA with MMSE-FDE is presented. The throughput is theoretically evaluated for the uncoded case. For RCPT-HARQ, the comparison is done by computer simulations. It is found that the throughput of HARQ using DS-CDMA with MMSE-FDE is the same as or better than using MC-CDMA. However, with higher level modulation, type I HARQ using OFDM is better than using either MC-CDMA or DS-CDMA; for type II HARQ without redundancy in the first transmission, however, MC-CDMA and DS-CDMA gives a higher throughput.

  • Gated-CDMA: Frequency-Domain Equalization for CDMA Systems

    Minjoong RIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    811-814

    While CDMA systems are proven to be excellent solutions for cellular communications, they suffer from severe multi-path interferences and are hard to support high-data-rate transmissions over frequency-selective fading channels. This letter introduces a novel downlink transmission method for next generation mobile communication systems. The proposed method can provide significantly improved performance in a hot-spot area while maintaining the backward compatibility with the 3rd generation CDMA systems.

  • Frequency-Domain Equalization for MC-CDMA Downlink Site Diversity and Performance Evaluation

    Takamichi INOUE  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Diversity

      Vol:
    E88-B No:1
      Page(s):
    84-92

    Similar to direct sequence code division multiple access (DS-CDMA), site diversity can be applied to a multicarrier-CDMA (MC-CDMA) cellular system to improve the bit error rate (BER) performance for a user with weak received signal power, thus resulting in an increased link capacity. In this paper, the downlink site diversity reception using frequency-domain equalization based on minimum mean square error (MMSE) is considered for a MC-CDMA cellular system. A set of active base stations to be involved in the site diversity operation is determined based on the received signal power measurement by a mobile station. Downlink capacity with site diversity is evaluated by computer simulation. The impacts of path loss exponent and shadowing loss standard deviation on the site diversity effect are discussed. Furthermore, the performance improvement by antenna diversity reception is discussed.

  • Analytical Results on Linear Prediction-Based Blind Channel Estimation and Equalization

    Kyung Seung AHN  Heung Ki BAIK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:11
      Page(s):
    3378-3381

    In this paper, we consider a blind channel estimation and equalization for single input multiple output (SIMO) channels. It is based on the one-step forward multichannel linear prediction error method. The derivation of the existing method is based on the noiseless assumption, however, we analyze the effects of additive noise at the output of the one-step forward multichannel linear prediction error filters. Moreover, we derive analytical results for the error in the blind channel estimation and equalization using linear prediction.

  • Blind Channel Equalization Using Fourth-Order Cumulants

    Soowhan HAN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    3116-3124

    In this study, a fourth-order cumulants based iterative algorithm for blind channel equalization is introduced, which is robust with respect to the existence of heavy Gaussian noise in a channel and does not require the minimum phase characteristic of the channel. The transmitted signals at the receiver are over-sampled to ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response (FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the over-sampled channel inputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple reordering and scaling. In simulation studies, both a closed-form and a stochastic version of the proposed algorithm are tested with three-ray multi-path channels, and their performances are compared with the methods based on conventional second-order statistics and higher-order statistics (HOS) as well. Relatively good results with fast convergence speed are achieved, even when the transmitted symbols are significantly corrupted with Gaussian noise.

  • Bit Error Rate Analysis of DS-CDMA with Joint Frequency-Domain Equalization and Antenna Diversity Combining

    Fumiyuki ADACHI  Kazuaki TAKEDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    2991-3002

    To improve the DS-CDMA signal transmission performance in a frequency-selective fading channel, the frequency-domain equalization (FDE) can be applied, in which simple one-tap equalization is carried out on each subcarrier component obtained by fast Fourier transform (FFT). Equalization weights for joint FDE and antenna diversity combining based on maximal ratio combining (MRC), zero-forcing (ZF), and minimum mean square error (MMSE) are derived. The conditional bit error rate (BER) is derived for the given set of channel gains in a frequency-selective multipath fading channel. The theoretical average BER performance is evaluated by Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation. Performance comparison between DS- and multi-carrier (MC)-CDMA both using FDE is also presented.

  • A Cluster Map Based Blind RBF Decision Feedback Equalizer with Reduced Computational Complexity

    Hai LIN  Katsumi YAMASHITA  

     
    PAPER-Digital Signal Processing

      Vol:
    E87-A No:10
      Page(s):
    2755-2760

    Recently, a cluster map based blind RBF equalizer (CM-BRE) has been proposed. By utilizing the underlying structure characteristics of RBF equalizer, the CM-BRE can be implemented by the combination of neural-gas algorithm (NGA) with several sorting operations. Although the CM-BRE is able to achieve almost identical performance with the optimal RBF equalizer, the high computational load mainly caused by NGA limits it's application. In this paper, we propose a downsizing method that employs the inter-relation among RBF centers and significantly reduces the NGA's computational load. Furthermore, a method to determine the feedback vector is derived, then CM-BRE is extended to a cluster map based blind RBF decision feedback equalizer (CM-BRDFE). The proposed CM-BRDFE also shows the close performance with the optimal RBF decision feedback equalizer in simulations.

  • Performance Comparison of Delay Transmit Diversity and Frequency-Domain Space-Time Coded Transmit Diversity for Orthogonal Multicode DS-CDMA Signal Reception Using Frequency-Domain Equalization

    Takeshi ITAGAKI  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:9
      Page(s):
    2719-2728

    In a severe frequency-selective fading channel, the bit error rate (BER) performance of orthogonal multicode DS-CDMA is severely degraded since the orthogonality property of spreading codes is partially lost. The frequency-selectivity of a fading channel can be exploited by using frequency-domain equalization to improve the BER performance. Further performance improvement can be obtained by using transmit diversity. In this paper, joint transmit diversity and frequency-domain equalization is presented for the reception of orthogonal multicode DS-CDMA signals in a frequency-selective fading channel. As for transmit diversity, delay transmit diversity (DTD) and frequency-domain space-time transmit diversity (STTD) are considered. The achievable BER performance of multicode DS-CDMA in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. It is shown that the frequency-domain STTD significantly improves the BER performance irrespective of the degree of the channel frequency-selectivity while DTD is useful only for a weak frequency-selective channel.

  • A Novel Neural Detector Based on Self-Organizing Map for Frequency-Selective Rayleigh Fading Channel

    Xiaoqiu WANG  Hua LIN  Jianming LU  Takashi YAHAGI  

     
    PAPER-Digital Signal Processing

      Vol:
    E87-A No:8
      Page(s):
    2084-2091

    In a high-rate indoor wireless personal communication system, the delay spread due to multi-path propagation results in intersymbol interference which can significantly increase the transmission bit error rate (BER). The technique most commonly used for combating the intersymbol interference and frequency-selective fading found in communications channels is the adaptive equalization. In this paper, we propose a novel neural detector based on self-organizing map (SOM) to improve the system performance of the receiver. In the proposed scheme, the SOM is used as an adaptive detector of equalizer, which updates the decision levels to follow the received faded signal. To adapt the proposed scheme to the time-varying channel, we use the Euclidean distance, which will be updated automatically according to the received faded signal, as an adaptive radius to define the neighborhood of the winning neuron of the SOM algorithm. Simulations on a 16 QAM system show that the receiver using the proposed neural detector has a significantly better BER performance than the traditional receiver.

  • Reduced-State Sequence Estimation for Coded Modulation in CPSC on Frequency-Selective Fading Channels

    Jeong-Woo JWA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    2040-2044

    Reduced-state sequence estimation (RSSE) for trellis-coded modulation (TCM) in cyclic prefixed single carrier (CPSC) with minimum mean-square error-linear equalization (MMSE-LE) on frequency-selective Rayleigh fading channels is proposed. The Viterbi algorithm (VA) is used to search for the best path through the reduced-state trellis combined equalization and TCM decoding. Computer simulations confirm the symbol error probability of the proposed scheme.

  • Joint Use of Frequency-Domain Equalization and Transmit/Receive Antenna Diversity for Single-Carrier Transmissions

    Kazuaki TAKEDA  Takeshi ITAGAKI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    1946-1953

    The joint use of frequency-domain equalization and antenna diversity is presented for single-carrier (SC) transmission in a frequency-selective fading channel. Frequency-domain equalization techniques using minimum mean square error (MMSE), orthogonal restoration combining (ORC) and maximum ratio combining (MRC), those used in multi-carrier code division multiple access (MC-CDMA), are considered. As antenna diversity techniques, receive diversity and delay transmit diversity (DTD) are considered. Bit error rate (BER) performance achievable with the joint use of frequency-domain equalization and antenna diversity is evaluated by computer simulation.

  • Joint Frequency-Domain Equalization and Antenna Diversity Combining for Orthogonal Multicode DS-CDMA Signal Transmissions in a Frequency-Selective Fading Channel

    Takeshi ITAGAKI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:7
      Page(s):
    1954-1963

    Orthogonal multicode direct sequence code division multiple access (DS-CDMA) has the flexibility in offering various data rate services. However, in a frequency-selective fading channel, the bit error rate (BER) performance is severely degraded since the othogonality among spreading codes is partially lost. In this paper, we apply frequency-domain equalization and antenna diversity combining, used in multi-carrier CDMA (MC-CDMA), to orthogonal multicode DS-CDMA in order to restore the code othogonality while achieving frequency and antenna diversity effect. It is found by computer simulations that the joint use of frequency-domain equalization and antenna diversity combining can significantly improve the BER performance of orthogonal multicode DS-CDMA in a frequency-selective fading channel.

  • A Decision Feedback Equalizing Receiver for the SSTL SDRAM Interface with Clock-Data Skew Compensation

    Young-Soo SOHN  Seung-Jun BAE  Hong-June PARK  Soo-In CHO  

     
    PAPER-Integrated Electronics

      Vol:
    E87-C No:5
      Page(s):
    809-817

    A CMOS DFE (decision feedback equalization) receiver with a clock-data skew compensation was implemented for the SSTL (stub-series terminated logic) SDRAM interface. The receiver consists of a 2 way interleaving DFE input buffer for ISI reduction and a X2 over-sampling phase detector for finding the optimum sampling clock position. The measurement results at 1.2 Gbps operation showed the increase of voltage margin by about 20% and the decrease of time jitter in the recovered sampling clock by about 40% by equalization in an SSTL channel with 2 pF 4 stub load. Active chip area and power consumption are 3001000 µm2 and 142 mW, respectively, with a 2.5 V, 0.25 µm CMOS process.

  • Joint Space-Time Transmit Diversity and Minimum Mean Square Error Equalization for MC-CDMA with Antenna Diversity Reception

    Deepshikha GARG  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:4
      Page(s):
    849-857

    In this paper, the space time transmit diversity (STTD) decoding combined with minimum mean square error (MMSE) equalization is presented for MC-CDMA downlink and uplink in the presence of multiple receive antennas. The equalization weights that minimize the MSE for each subcarrier are derived. From computer simulation, it was found that the BER performance of STTD decoding combined with MMSE equalization and Mr-antenna diversity reception using the weights derived in this paper provides the same diversity order as 2Mr-antenna receive diversity with MMSE equalization but with 3 dB performance penalty and is always better than that with no diversity. The uplink BER performance can also be improved with STTD, but the error floor still exists. However, with 2-receive antennas in addition to 2-antenna STTD, the BER floor can be reduced to around 10-5 even for the uplink.

141-160hit(217hit)