The search functionality is under construction.

Keyword Search Result

[Keyword] error correction(88hit)

1-20hit(88hit)

  • Performance Comparison of the Two Reconstruction Methods for Stabilizer-Based Quantum Secret Sharing

    Shogo CHIWAKI  Ryutaroh MATSUMOTO  

     
    LETTER-Quantum Information Theory

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:3
      Page(s):
    526-529

    Stabilizer-based quantum secret sharing has two methods to reconstruct a quantum secret: The erasure correcting procedure and the unitary procedure. It is known that the unitary procedure has a smaller circuit width. On the other hand, it is unknown which method has smaller depth and fewer circuit gates. In this letter, it is shown that the unitary procedure has smaller depth and fewer circuit gates than the erasure correcting procedure which follows a standard framework performing measurements and unitary operators according to the measurements outcomes, when the circuits are designed for quantum secret sharing using the [[5, 1, 3]] binary stabilizer code. The evaluation can be reversed if one discovers a better circuit for the erasure correcting procedure which does not follow the standard framework.

  • A Survey of Quantum Error Correction Open Access

    Ryutaroh MATSUMOTO  Manabu HAGIWARA  

     
    INVITED SURVEY PAPER-Coding Theory

      Pubricized:
    2021/06/18
      Vol:
    E104-A No:12
      Page(s):
    1654-1664

    This paper surveys development of quantum error correction. With the familiarity with conventional coding theory and tensor product in multi-linear algebra, this paper can be read in a self-contained manner.

  • Simplified Iterative Decoder for Polybinary-Shaped Optical Signals in Super-Nyquist Wavelength Division Multiplexed Systems

    Shuai YUAN  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/10/11
      Vol:
    E102-B No:4
      Page(s):
    818-823

    In super-Nyquist wavelength division multiplexed systems, performance of forward error correction (FEC) can be improved by an iterative decoder between a maximum likelihood decoder for polybinary shaping and an FEC decoder. The typical iterative decoder includes not only the iteration between the first and second decoders but also the internal iteration within the FEC decoder. Such two-fold loop configuration would increase the computational complexity for decoding. In this paper, we propose the simplified iterative decoder, where the internal iteration in the FEC decoder is not performed, reducing the computational complexity. We numerically evaluate the bit-error rate performance of polybinary-shaped QPSK signals in the simplified iterative decoder. The numerical results show that the FEC performance can be improved in the simplified scheme, compared with the typical iterative decoder. In addition, the performance of the simplified iterative decoder has been investigated by the extrinsic information transfer (EXIT) chart.

  • Error-Trapping Decoding for Cyclic Codes over Symbol-Pair Read Channels

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory and Techniques

      Vol:
    E100-A No:12
      Page(s):
    2578-2584

    Symbol-pair read channels output overlapping pairs of symbols in storage applications. Pair distance and pair error are used in the channels. In this paper, we discuss error-trapping decoding for cyclic codes over symbol-pair read channels. By putting some restrictions on the correctable pair error patterns, we propose a novel error-trapping decoding algorithm over the channels and show a circuitry for implementing the decoding algorithm. In addition, we discuss how to modify the restrictions on the correctable pair error patterns.

  • Quantum Stabilizer Codes Can Realize Access Structures Impossible by Classical Secret Sharing

    Ryutaroh MATSUMOTO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E100-A No:12
      Page(s):
    2738-2739

    We show a simple example of a secret sharing scheme encoding classical secret to quantum shares that can realize an access structure impossible by classical information processing with limitation on the size of each share. The example is based on quantum stabilizer codes.

  • TCP-TFEC: TCP Congestion Control based on Redundancy Setting Method for FEC over Wireless LAN

    Fumiya TESHIMA  Hiroyasu OBATA  Ryo HAMAMOTO  Kenji ISHIDA  

     
    PAPER-Wireless networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2818-2827

    Streaming services that use TCP have increased; however, throughput is unstable due to congestion control caused by packet loss when TCP is used. Thus, TCP control to secure a required transmission rate for streaming communication using Forward Error Correction (FEC) technology (TCP-AFEC) has been proposed. TCP-AFEC can control the appropriate transmission rate according to network conditions using a combination of TCP congestion control and FEC. However, TCP-AFEC was not developed for wireless Local Area Network (LAN) environments; thus, it requires a certain time to set the appropriate redundancy and cannot obtain the required throughput. In this paper, we demonstrate the drawbacks of TCP-AFEC in wireless LAN environments. Then, we propose a redundancy setting method that can secure the required throughput for FEC, i.e., TCP-TFEC. Finally, we show that TCP-TFEC can secure more stable throughput than TCP-AFEC.

  • A Method for Correcting Preposition Errors in Learner English with Feedback Messages

    Ryo NAGATA  Edward WHITTAKER  

     
    PAPER-Educational Technology

      Pubricized:
    2017/03/08
      Vol:
    E100-D No:6
      Page(s):
    1280-1289

    This paper presents a novel framework called error case frames for correcting preposition errors. They are case frames specially designed for describing and correcting preposition errors. Their most distinct advantage is that they can correct errors with feedback messages explaining why the preposition is erroneous. This paper proposes a method for automatically generating them by comparing learner and native corpora. Experiments show (i) automatically generated error case frames achieve a performance comparable to previous methods; (ii) error case frames are intuitively interpretable and manually modifiable to improve them; (iii) feedback messages provided by error case frames are effective in language learning assistance. Considering these advantages and the fact that it has been difficult to provide feedback messages using automatically generated rules, error case frames will likely be one of the major approaches for preposition error correction.

  • Correcting Syntactic Annotation Errors Based on Tree Mining

    Kanta SUZUKI  Yoshihide KATO  Shigeki MATSUBARA  

     
    PAPER-Natural Language Processing

      Pubricized:
    2017/01/23
      Vol:
    E100-D No:5
      Page(s):
    1106-1113

    This paper provides a new method to correct annotation errors in a treebank. The previous error correction method constructs a pseudo parallel corpus where incorrect partial parse trees are paired with correct ones, and extracts error correction rules from the parallel corpus. By applying these rules to a treebank, the method corrects errors. However, this method does not achieve wide coverage of error correction. To achieve wide coverage, our method adopts a different approach. In our method, we consider that if an infrequent pattern can be transformed to a frequent one, then it is an annotation error pattern. Based on a tree mining technique, our method seeks such infrequent tree patterns, and constructs error correction rules each of which consists of an infrequent pattern and a corresponding frequent pattern. We conducted an experiment using the Penn Treebank. We obtained 1,987 rules which are not constructed by the previous method, and the rules achieved good precision.

  • Simplified Maximum Likelihood Detection with Unitary Precoding for XOR Physical Layer Network Coding

    Satoshi DENNO  Daisuke UMEHARA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/07/19
      Vol:
    E100-B No:1
      Page(s):
    167-176

    This paper proposes novel simplified maximum likelihood detection for XOR physical layer network coding (XOR-PNC) in bi-directional wireless relay systems with Quaternary phase shift keying (QPSK). The proposed detection applies unitary precoding to achieve superior performance without computationally prohibitive exhaustive search. The performance of the XOR employing the proposed simplified MLD with the precoding is analyzed in relay systems with orthogonal frequency division multiplexing (OFDM). The performance of the XOR-PNC with the proposed techniques is also evaluated by computer simulation. The XOR-PNC with the proposed techniques achieves about 7dB better performance than the amplify-and-forward physical layer network coding in the 5-path fading channel at BER=10-4. It is also shown that the XOR-PNC with the proposed techniques achieves better performance than that without precoding.

  • A Fast Settling All Digital PLL Using Temperature Compensated Oscillator Tuning Word Estimation Algorithm

    Keisuke OKUNO  Shintaro IZUMI  Kana MASAKI  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-Circuit Design

      Vol:
    E98-A No:12
      Page(s):
    2592-2599

    This report describes an all-digital phase-locked loop (ADPLL) using a temperature compensated settling time reduction technique. The novelty of this work is autonomous oscillation control word estimation without a look-up table or memory circuits. The proposed ADPLL employs a multi-phase digitally controlled oscillator (DCO). In the proposed estimation method, the optimum oscillator tuning word (OTW) is estimated from the DCO frequency characteristic in the setup phase of ADPLL. The proposed ADPLL, which occupies 0.27×0.36mm2, is fabricated by a 65 nm CMOS process. The temperature compensation PLL controller (TCPC) is implemented using an FPGA. Although the proposed method has 20% area overhead, measurement results show that the 47% settling time is reduced. The average settling time at 25°C is 3µs. The average reduction energy is at least 42% from 0°C to 100°C.

  • Error Correction Using Long Context Match for Smartphone Speech Recognition

    Yuan LIANG  Koji IWANO  Koichi SHINODA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2015/07/31
      Vol:
    E98-D No:11
      Page(s):
    1932-1942

    Most error correction interfaces for speech recognition applications on smartphones require the user to first mark an error region and choose the correct word from a candidate list. We propose a simple multimodal interface to make the process more efficient. We develop Long Context Match (LCM) to get candidates that complement the conventional word confusion network (WCN). Assuming that not only the preceding words but also the succeeding words of the error region are validated by users, we use such contexts to search higher-order n-grams corpora for matching word sequences. For this purpose, we also utilize the Web text data. Furthermore, we propose a combination of LCM and WCN (“LCM + WCN”) to provide users with candidate lists that are more relevant than those yielded by WCN alone. We compare our interface with the WCN-based interface on the Corpus of Spontaneous Japanese (CSJ). Our proposed “LCM + WCN” method improved the 1-best accuracy by 23%, improved the Mean Reciprocal Rank (MRR) by 28%, and our interface reduced the user's load by 12%.

  • Wireless Distance Estimation Based on Error Correction of Bluetooth RSSI

    Joon-young JUNG  Dong-oh KANG  Jang-ho CHOI  Changseok BAE  Dae-young KIM  

     
    PAPER-Network

      Vol:
    E98-B No:6
      Page(s):
    1018-1031

    In this paper, we propose an error-correction low-pass filter (EC-LPF) algorithm for estimating the wireless distance between devices. To measure this distance, the received signal strength indication (RSSI) is a popularly used method because the RSSI of a wireless signal, such as Wi-Fi and Bluetooth, can be measured easily without the need for additional hardware. However, estimating the wireless distance using an RSSI is known to be difficult owing to the occurrence of inaccuracies. To examine the inaccuracy characteristics of Bluetooth RSSI, we conduct a preliminary test to discover the relationship between the actual distance and Bluetooth RSSI under several different environments. The test results verify that the main reason for inaccuracy is the existence of measurement errors in the raw Bluetooth RSSI data. In this paper, the EC-LPF algorithm is proposed to reduce measurement errors by alleviating fluctuations in a Bluetooth signal with responsiveness for real-time applications. To evaluate the effectiveness of the EC-LPF algorithm, distance accuracies of different filtering algorithms are compared, namely, a low-pass filer (LPF), a Kalman filter, a particle filter, and the EC-LPF algorithm under two different environments: an electromagnetic compatibility (EMC) chamber and an indoor hall. The EC-LPF algorithm achieves the best performance in both environments in terms of the coefficient of determination, standard deviation, measurement range, and response time. In addition, we also implemented a meeting room application to verify the feasibility of the EC-LPF algorithm. The results prove that the EC-LPF algorithm distinguishes the inside and outside areas of a meeting room without error.

  • RFID Authentication with Un-Traceability and Forward Secrecy in the Partial-Distributed-Server Model Open Access

    Hung-Yu CHIEN  Tzong-Chen WU  Chien-Lung HSU  

     
    INVITED PAPER

      Pubricized:
    2014/12/04
      Vol:
    E98-D No:4
      Page(s):
    750-759

    Secure authentication of low cost Radio Frequency Identification (RFID) tag with limited resources is a big challenge, especially when we simultaneously consider anonymity, un-traceability, and forward secrecy. The popularity of Internet of Things (IoT) further amplifies this challenge, as we should authenticate these mobile tags in the partial-distributed-server environments. In this paper, we propose an RFID authentication scheme in the partial-distributed-server environments. The proposed scheme owns excellent performance in terms of computational complexity and scalability as well as security properties.

  • Melanosome Tracking Using Automatic Error Correction

    Toshiaki OKABE  Kazuhiro HOTTA  

     
    PAPER-Biological Engineering

      Vol:
    E97-D No:12
      Page(s):
    3201-3209

    This paper proposes an automatic error correction method for melanosome tracking. Melanosomes in intracellular images are currently tracked manually when investigating diseases, and an automatic tracking method is desirable. We detect all melanosome candidates by SIFT with 2 different parameters. Of course, the SIFT also detects non-melanosomes. Therefore, we use the 4-valued difference image (4-VDimage) to eliminate non-melanosome candidates. After tracking melanosome, we re-track the melanosome with low confidence again from t+1 to t. If the results from t to t+1 and from t+1 to t are different, we judge that initial tracking result is a failure, the melanosome is eliminated as a candidate and re-tracking is carried out. Experiments demonstrate that our method can correct the error and improves the accuracy.

  • Asynchronous Stochastic Decoding of LDPC Codes: Algorithm and Simulation Model

    Naoya ONIZAWA  Warren J. GROSS  Takahiro HANYU  Vincent C. GAUDET  

     
    PAPER-VLSI Architecture

      Vol:
    E97-D No:9
      Page(s):
    2286-2295

    Stochastic decoding provides ultra-low-complexity hardware for high-throughput parallel low-density parity-check (LDPC) decoders. Asynchronous stochastic decoding was proposed to demonstrate the possibility of low power dissipation and high throughput in stochastic decoders, but decoding might stop before convergence due to “lock-up”, causing error floors that also occur in synchronous stochastic decoding. In this paper, we introduce a wire-delay dependent (WDD) scheduling algorithm for asynchronous stochastic decoding in order to reduce the error floors. Instead of assigning the same delay to all computation nodes in the previous work, different computation delay is assigned to each computation node depending on its wire length. The variation of update timing increases switching activities to decrease the possibility of the “lock-up”, lowering the error floors. In addition, the WDD scheduling algorithm is simplified for the hardware implementation in order to eliminate time-averaging and multiplication functions used in the original WDD scheduling algorithm. BER performance using a regular (1024, 512) (3,6) LDPC code is simulated based on our timing model that has computation and wire delay estimated under ASPLA 90nm CMOS technology. It is demonstrated that the proposed asynchronous decoder achieves a 6.4-9.8× smaller latency than that of the synchronous decoder with a 0.25-0.3 dB coding gain.

  • Three Benefits Brought by Perturbation Back-Propagation Algorithm in 224Gb/s DP-16QAM Transmission

    Shoichiro ODA  Takahito TANIMURA  Takeshi HOSHIDA  Yuichi AKIYAMA  Hisao NAKASHIMA  Kyosuke SONE  Zhenning TAO  Jens C. RASMUSSEN  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1342-1349

    Nonlinearity compensation algorithm and soft-decision forward error correction (FEC) are considered as key technologies for future high-capacity and long-haul optical transmission system. In this report, we experimentally demonstrate the following three benefits brought by low complexity perturbation back-propagation nonlinear compensation algorithm in 224Gb/s DP-16QAM transmission over large-Aeff pure silica core fiber; (1) improvement of pre-FEC bit error ratio, (2) reshaping noise distribution to more Gaussian, and (3) reduction of cycle slip probability.

  • Connection Choice Codes

    Chih-Ming CHEN  Ying-ping CHEN  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:7
      Page(s):
    1350-1357

    Luby Transform (LT) codes are the first practical implementation of digital fountain codes. In LT codes, encoding symbols are independently generated so as to realize the universal property which means that performance is independent of channel parameters. The universal property makes LT codes able to provide reliable delivery simultaneously via channels of different quality while it may also limit the flexibility of LT codes. In certain application scenarios, such as real-time multimedia transmission, most receivers have tolerable channels whose erasure rates are not fixed, and channels of high erasure rate are outside the design box. In this paper, Connection Choice (CC) codes are proposed to trade the universal property for better performance. The key to CC codes is replacement of random selection with tournament selection. Tournament selection can equalize the frequency of input symbols to join encoding and change the degree distribution of input symbols. Our study indicates that CC codes with appropriate degree distributions provide better performance than the best known LT code when channels of high erasure rate can be ignored. CC codes enable system designers to customize digital fountain codes by taking into account the distribution of the erasure rate and create a new possibility for setting trade-offs between performance and erasure rate.

  • Automatic Rectification of Processor Design Bugs Using a Scalable and General Correction Model

    Amir Masoud GHAREHBAGHI  Masahiro FUJITA  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:4
      Page(s):
    852-863

    This paper presents a method for automatic rectification of design bugs in processors. Given a golden sequential instruction-set architecture model of a processor and its erroneous detailed cycle-accurate model at the micro-architecture level, we perform symbolic simulation and property checking combined with concrete simulation iteratively to detect the buggy location and its corresponding fix. We have used the truth-table model of the function that is required for correction, which is a very general model. Moreover, we do not represent the truth-table explicitly in the design. We use, instead, only the required minterms, which are obtained from the output of our backend formal engine. This way, we avoid adding any new variable for representing the truth-table. Therefore, our correction model is scalable to the number of inputs of the truth-table that could grow exponentially. We have shown the effectiveness of our method on a complex out-of-order superscalar processor supporting atomic execution of instructions. Our method reduces the model size for correction by 6.0x and total correction time by 12.6x, on average, compared to our previous work.

  • A Practical Optimization Framework for the Degree Distribution in LT Codes

    Chih-Ming CHEN  Ying-ping CHEN  Tzu-Ching SHEN  John K. ZAO  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:11
      Page(s):
    2807-2815

    LT codes are the first practical rateless codes whose reception overhead totally depends on the degree distribution adopted. The capability of LT codes with a particular degree distribution named robust soliton has been theoretically analyzed; it asymptotically approaches the optimum when the message length approaches infinity. However, real applications making use of LT codes have finite number of input symbols. It is quite important to refine degree distributions because there are distributions whose performance can exceed that of the robust soliton distribution for short message length. In this work, a practical framework that employs evolutionary algorithms is proposed to search for better degree distributions. Our experiments empirically prove that the proposed framework is robust and can customize degree distributions for LT codes with different message length. The decoding error probabilities of the distributions found in the experiments compare well with those of robust soliton distributions. The significant improvement of LT codes with the optimized degree distributions is demonstrated in the paper.

  • Layer-Aware FEC Based Scalable Multiple Description Coding for Robust Video Transmission over Path Diversity Networks

    Dinh Trieu DUONG  Deepak Kumar SINGH  Seok Ho WON  Doug Young SUH  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E96-B No:9
      Page(s):
    2323-2332

    In this paper, we propose a novel layered scalable- multiple description coding (LS-MDC) which offers the benefits of both scalable video coding and multiple description coding for robust video transmission over packet lossy networks. In the proposed LS-MDC method, multiple descriptions including base layer, enhancement layers, and their corresponding FEC parity data are allocated into two network paths of a path diversity system. Unlike the conventional approaches, the source base/enhancement data and their own parities in the proposed method are not transmitted together but are transferred over different paths. Therefore, the effect of burst packet losses can be effectively reduced for the descriptions. Furthermore, in order to minimize the overall distortion for the LS-MDC system and exploit the benefits of path diversity, we also propose an optimal rate allocation scheme that can adaptively control the transmission rate as well as the channel coding rate for media senders. Experiments show that the proposed method provides much better peak signal-to-noise ratio (PSNR) than conventional MDC techniques.

1-20hit(88hit)