The search functionality is under construction.

Keyword Search Result

[Keyword] fixed point DSP(3hit)

1-3hit
  • A 1.5 V, 200 MHz, 400 MIPS, 188 µA/MHz and 1.2 V, 300 MHz, 600 MIPS, 169 µA/MHz Digital Signal Processor Core for 3G Wireless Applications

    Hiroshi TAKAHASHI  Shigeshi ABIKO  Kenichi TASHIRO  Kaoru AWAKA  Yutaka TOYONOH  Rimon IKENO  Shigetoshi MURAMATSU  Yasumasa IKEZAKI  Tsuyoshi TANAKA  Akihiro TAKEGAMA  Hiroshi KIMIZUKA  Hidehiko NITTA  Miki KOJIMA  Masaharu SUZUKI  James Lowell LARIMER  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    491-501

    A new high-speed and low-power digital signal processor (DSP) core, C55x, was developed for next generation applications such as 3G cellular phone, PDA, digital still camera (DSC), audio, video, embedded modem, DVD, and so on. To support such MIPS-rich applications, a packet size of an instruction fetch increased from 16-bit to 32-bit comparing with the world's most popular C54x DSP core, while maintaining complete software compatibility with the legacy DSP code. An on-chip instruction buffer queue (IBQ) automatically unpacks the packets and issues multiple instructions in parallel for the efficient use of circuit resources. The efficiency of the parallelism has been further improved by additional hardwares such as second 1717-bit MAC, a 16-bit ALU, and three temporary registers that can be used for simple computations. Four 40-bit accumulators make it possible to execute more operation per cycle with dramatically reduced overall power consumption. These new architecture allows two times efficiency of instruction per cycle (IPC) than the previous DSP core on typical applications at the same MHz. The new DSP core was designed for TI's two 130 nm technologies, one with high-VT for low-leakage and middle-performance operation at 1.5 V, and the other with low-VT for high-performance and low-VDD operation at 1.2 V, to provide best choices for any applications with a single layout data base. With the low-leakage process, the DSP core operates at over 200 MHz with 188 µA/MHz (at 75% Dual MAC + 25% ADD) active power and less than 1.63 µA standby current. The high-performance process provides it with 300 MHz with 169 µA/MHz active power and less than 680 µA standby current. The new core was designed by a semi-custom approach (ASIC + custom library) using 5-level Cu metal system with low-k dielectric material of fluorosilicate glass (FSG), and about one million transistors are contained in the core. The total balance of its power, performance, area, and leakage current (PPAL) is well suitable to most of next generation applications. In this paper, we will discuss features of the new DSP core, including circuit design techniques for high-speed and low-power, and present an example product.

  • High-Speed and Low-Power Techniques of Hardware and Software for Digital Signal Processors

    Hiroshi TAKAHASHI  Rimon IKENO  Yutaka TOYONOH  Akihiro TAKEGAMA  Yasumasa IKEZAKI  Tohru URASAKI  Hitoshi SATOH  Masayasu ITOIGAWA  Yoshinari MATSUMOTO  

     
    PAPER-Circuit Design

      Vol:
    E86-C No:4
      Page(s):
    589-596

    High-speed and low-power DSPs have been developed for versatile hand set applications. The DSP contains a 16-bit fixed point DSP core with multiple buses, highly tuned instruction sets and a low-power architecture, featuring CPU power with 404.5 µ W/MHz, chip power with 2.08 mW/MHz at peak and 200 µA stand-by current and 160 MHz/160 MIPS performance by a single DSP core, and also operates at 0.68 V within the temperature range from -40C to 125C in the worst case (Weak corner) even using much higher I-off current process compared to a conventional process to obtain a faster operating frequency. In this paper, we discuss circuit design techniques to continue scaling down valuable IP cores keeping the same functionality, better speed performance, and lower power dissipation with much lower voltage operation capability. For further power reduction by DSP software, Run-time Power Control (RPC) has been demonstrated in an MP3 player using 100 MHz/100 MIPS DSP at 1.8 V, which is a real-time application running on an Internet audio evaluation module experimentally and we obtained 32-60% power reduction on various music source data.

  • A 1.2 V, 30 MIPS, 0.3 mA/MIPS and 200 MIPS, 0.58 mA/MIPS Digital Signal Processors

    Hiroshi TAKAHASHI  Shintaro MIZUSHIMA  

     
    PAPER

      Vol:
    E83-C No:2
      Page(s):
    179-185

    High-speed and low-power DSPs have been developed for versatile applications, especially for digital communications. These DSPs contain a 16-bit fixed point DSP core with multiple buses, highly tuned instruction set and low-power architecture, featuring 0.45 mA/MIPS, 100-120 MIPS performance by a single CPU core, 200 MIPS performance by dual CPU core architecture, respectively and also contain a 1.2 V low-voltage DSP core with 30 MIPS performance for super low-power applications. In this paper, new architecture VIA2 programming ROM for high-speed and new D flip-flop circuit considering the impact of pocket implantation process for low power are discussed, including key C-MOS process technology.