The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] flat(65hit)

41-60hit(65hit)

  • Hybrid Concatenated Space-Time Coding Systems

    Bon-Jin KU  Jong-Moon CHUNG  Changeon KANG  

     
    LETTER-Fundamental Theories

      Vol:
    E86-B No:12
      Page(s):
    3614-3616

    The effects of hybrid concatenated space-time (HC-ST) codes applying iterative a posteriori probability (APP) decoding are investigated. The bit error rate (BER) and frame error rate (FER) performance of the iterative decoded hybrid Tarokh, Seshadri, Calderbank space-time (TSC ST) coded system under flat Rayleigh fading is analyzed. At the FER 10-2 level the results show that the serially concatenated space-time (SC-ST) codes provide a coding gain of 3 dB compared to the TSC ST codes, where an additional coding gain of 1 dB beyond the SC-ST code performance can be obtained applying the HC-ST coding topology.

  • The Effect of Input Azimuth of Cross-Phase-Modulated Soliton Pulses on Supercontinuum Generation in a Dispersion-Flattened/Decreasing Fiber with Low Birefringence

    Hiroyasu SONE  Masaaki IMAI  Yoh IMAI  Yasuhiro HARADA  

     
    PAPER

      Vol:
    E86-C No:5
      Page(s):
    714-718

    It is found that the supercontinuum spectrum is generated from cross-phase modulated soliton pulses which are propagated through a dispersion-flattened/decreasing fiber with low birefringence. The cross-phase modulation is achieved by exciting two orthogonally polarized modes in a birefringent fiber and the effect of input azimuth of linearly polarized pulses is discussed theoretically and numerically.

  • Blind Source Separation of a Mixture of Communication Sources with Various Symbol Periods

    Sebastien HOUCKE  Antoine CHEVREUIL  Philippe LOUBATON  

     
    INVITED PAPER-Convolutive Systems

      Vol:
    E86-A No:3
      Page(s):
    564-572

    A blind source separation problem in a solicitations context is addressed. The mixture stems from several telecommunication signals, the symbol periods of which are unknown and possibly different. Cost functions are introduced, the optimization of which achieves the equalization for a user, i.e. estimation of the symbol period and the associated sequence of symbols. The method is iterated by implementing a deflation. The theoretical results are validated by simulations.

  • Small Protrusion Used as a Probe for Apertureless Scanning Near-Field Optical Microscopy

    Noritaka YAMAMOTO  Takashi HIRAGA  

     
    LETTER

      Vol:
    E85-C No:12
      Page(s):
    2104-2108

    We demonstrated apertureless scanning near-field optical microscopy using a small protrusion (a simple 500-nm-diameter polystyrene particle) on a flat glass substrate as a probe. We designed a small sample stage to operate with the particle probe. It is a 40-µm-diameter circular stage, fabricated from an optical fiber by Hydrofluoric acid (HF) etching. In this paper, we present the first atomic force microscope and scanning near-field optical microscope images obtained with such a probe. We also discuss schemes for probe-sample distance control in this novel form of apertureless scanning near-field optical microscopy.

  • Effect of Noisy Estimation on Turbo-Coded Modulation over Flat Rayleigh Fading Channels

    Tadashi MINOWA  Hideki IMAI  

     
    PAPER-Coding Theory

      Vol:
    E85-A No:10
      Page(s):
    2211-2219

    The effects of noisy estimates of fading on turbo-coded modulation are studied in the presence of flat Rayleigh fading, and the channel capacity of the system is calculated to determine the limit above which no reliable transmission is guaranteed. This limit is then compared to the signal-to-noise ratio required for a turbo-coded modulation scheme to achieve a bit-error-rate of 10-5. Numerical results are obtained, especially for QAM signals. Our results show that even slightly noisy estimates significantly degrade the theoretical limits related to channel capacities, and that an effective use of capacity-approaching codes can lower the sensitivity to noisy estimates, though noise that exceeds a certain threshold cannot be offset by the performance improvement associated with error-correcting capability.

  • Improved Space-Time Convolutional Code in Quasistatic Flat Rayleigh Fading

    Moo Sam KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:10
      Page(s):
    2341-2343

    It has been established that the criteria for space-time convolutional code (STCC) are based on the maximization of the minimum rank and the minimum determinant of distance matrix over quasistatic flat Rayleigh fading channel. This letter presents a new criterion, i.e., modified trace criterion which maximizes both the minimum trace and the average trace of distance matrix for a new STCC. A new STCC is systematically searched so as to maximize the minimum trace and the average trace, and shown to be superior to other known codes in quasistatic flat Rayleigh fading channel.

  • Box-Like Response of Microring Resonator Filter by Stacked Double-Ring Geometry

    Yasuo KOKUBUN  Takashi KATO  Sai Tak CHU  

     
    PAPER-Hybrid and Passive Devices

      Vol:
    E85-C No:4
      Page(s):
    1018-1024

    The Lorentzian-shape filter response of a microring resonator filter is not suitable to the practical use in WDM systems, because of the lack of pass band flatness, high cross talk, and the large wing in the stop band. Therefore, the tailoring of filter response shape is required to improve the performance. In this paper, the authors designed and demonstrated the box-like filter response of microring resonator filter by using the supermodes of stacked double microring resonators. The thicknesses of microrings and the separation between them were optimally designed to give the maximally flat response. A fine fabrication process was developed to achieve the deep and very smooth side wall. The shape factor, which is defined by the ratio of -1 dB bandwidth to -10 dB bandwidth, was successfully improved by three factors from 0.17 of Lorentzian shape to 0.51.

  • Long Distance 40 Gbit/s-Based WDM Transmission Using Dispersion-Flattened Low-Nonlinear Fiber Span

    Itsuro MORITA  Keiji TANAKA  Noboru EDAGAWA  Masatoshi SUZUKI  

     
    PAPER

      Vol:
    E85-B No:2
      Page(s):
    478-483

    The effectiveness of Aeff enlarged positive dispersion fiber (EE-PDF) and hybrid amplification configuration with erbium-doped fiber amplifier (EDFA) and fiber Raman amplifier for reducing the fiber nonlinearity and improving the transmission performance in long distance 40 Gbit/s-based WDM transmission was investigated. We have confirmed that the use of EE-PDF in modified dispersion map for 40 Gbit/s transmission is quite effective to increase the transmissible distance and have successfully demonstrated 16 40 Gbit/s WDM transmission over 2000 km with proper dispersion management. We have also confirmed that the use of distributed Raman amplification is quite effective to extend the repeater spacing. By adding the optimum Raman amplification, almost the same transmission performance was obtained with a doubled repeater spacing in long distance 40 Gbit/s-based WDM transmission.

  • Sub-100 fs Higher Order Soliton Compression in Dispersion-Flattened Fibers

    Masahiro TSUCHIYA  Koji IGARASHI  Satoshi SAITO  Masato KISHI  

     
    INVITED PAPER-Optical Pulse Compression, Control and Monitoring

      Vol:
    E85-C No:1
      Page(s):
    141-149

    We review recent progresses in our studies on the fiber-optic soliton compression and related subjects with special emphasis on dispersion-flattened fibers (DFFs). As for the ultimately short pulse generation, it has been demonstrated to compress 5 ps laser diode pulses down to 20 fs with a 15.1 m-long single-stage step-like dispersion profiled fiber employed. The compression was brought about through a series of the higher order soliton processes in conjunction with a single and ordinary erbium-doped fiber preamplifier, and DFFs contained at its end played a major role. We have performed intensive investigations on the DFF compression mechanisms in the 100-20 fs range. A fairly reliable model was developed for the higher order soliton propagation along a DFF in the temporal range from 100 down to 30 fs by taking into consideration the higher order nonlinear and dispersion effects as well as incident pulse shape dependence. Through the simulation, parametric spectrum generation originating from the modulation instability gain was pointed out at frequencies apart from the pump wave frequency, which agrees with the experimental observation. Its possible application is also discussed.

  • Mathematical Proof of Explicit Formulas for Tap-Coefficients of Taylor Series Based FIR Digital Differentiators

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E84-A No:6
      Page(s):
    1581-1584

    Explicit formulas for the tap-coefficients of Taylor series based type III FIR digital differentiators have already been presented. However, those formulas were not derived mathematically from the Taylor series and were based on observation of different sets of the results. In this paper, we provide a mathematical proof of the formulas by deriving them mathematically from the Taylor series.

  • Broadband Raman Amplifier for WDM

    Yoshihiro EMORI  Shu NAMIKI  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1219-1223

    We have developed the design procedure of multi-wavelength pumped Raman amplifiers, introducing superposition rule and account for pump-to-pump energy transfer. It is summarized with respect to the pumping wavelength and power allocation. The comparisons between simulated and experimental results are presented. Section 2 reviews the fundamentals of Raman amplifier. In this section, Raman gain spectra measured for different fibers are presented and the difference among the spectra is discussed. Section 3 describes the way to determine the pumping wavelength allocation by introducing superposition method. By means of this design method, some optimized design examples are presented, where the peak levels of Raman gain are fixed to 10 dB for the wavelength range from 1525 nm to 1615 nm (C- plus L-band) in all cases. From these results, it is confirmed that better gain flatness can be obtained by using the larger number of pumps. Section 4 explains how the pump-to-pump energy transfer changes the gain profile by experimental and simulated results. In this section, simulation modeling to perform precise numerical simulation is also presented. From the above discussion, the design procedure can be simplified: (1) one determines pump wavelengths with which a desired composite Raman gain can be obtained by adding in logarithmic scale individual Raman gain spectra shifted by the respective wavelength differences with adequate weight factors. And (2), one predicts how much power should be launched in order to realize the weight factors through precise numerical simulations. Section 5 verifies the superposition rule and the effect of pump-to-pump energy transfer by comparing a measured Raman gain with a superposed one. The agreement of two gain profiles shows that the multi-wavelength pumped Raman gain profile contains only the individual gain profiles created by the respective pump wavelengths. Section 6 concludes this paper.

  • Broadband Raman Amplifier for WDM

    Yoshihiro EMORI  Shu NAMIKI  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    593-597

    We have developed the design procedure of multi-wavelength pumped Raman amplifiers, introducing superposition rule and account for pump-to-pump energy transfer. It is summarized with respect to the pumping wavelength and power allocation. The comparisons between simulated and experimental results are presented. Section 2 reviews the fundamentals of Raman amplifier. In this section, Raman gain spectra measured for different fibers are presented and the difference among the spectra is discussed. Section 3 describes the way to determine the pumping wavelength allocation by introducing superposition method. By means of this design method, some optimized design examples are presented, where the peak levels of Raman gain are fixed to 10 dB for the wavelength range from 1525 nm to 1615 nm (C- plus L-band) in all cases. From these results, it is confirmed that better gain flatness can be obtained by using the larger number of pumps. Section 4 explains how the pump-to-pump energy transfer changes the gain profile by experimental and simulated results. In this section, simulation modeling to perform precise numerical simulation is also presented. From the above discussion, the design procedure can be simplified: (1) one determines pump wavelengths with which a desired composite Raman gain can be obtained by adding in logarithmic scale individual Raman gain spectra shifted by the respective wavelength differences with adequate weight factors. And (2), one predicts how much power should be launched in order to realize the weight factors through precise numerical simulations. Section 5 verifies the superposition rule and the effect of pump-to-pump energy transfer by comparing a measured Raman gain with a superposed one. The agreement of two gain profiles shows that the multi-wavelength pumped Raman gain profile contains only the individual gain profiles created by the respective pump wavelengths. Section 6 concludes this paper.

  • New Efficient Designs of Discrete and Differentiating FIR Hilbert Transformers

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:12
      Page(s):
    2736-2738

    New designs of MAXFLAT discrete and differentiating Hilbert transformers are presented using their interrelationships with digital differentiators. The new designs have the explicit formulas for their tap-coefficients, which are further modified to obtain a new class of narrow transition band filters, with a performance comparable to the Chebyshev filters.

  • Efficient Design of Halfband Low/High Pass FIR Filters Using Explicit Formulas for Tap-Coefficients

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:11
      Page(s):
    2370-2373

    New explicit formulas for tap-coefficients of halfband low/high pass MAXFLAT non-recursive filters are presented by using their relationship with already presented maximally linear type IV differentiators. These formulas are modified to give a new class of narrow transition band filters, with a performance comparable to that of optimal filters.

  • Recent Progress on Arrayed Waveguide Gratings for DWDM Applications

    Akimasa KANEKO  Akio SUGITA  Katsunari OKAMOTO  

     
    INVITED PAPER-WDM Network Devices

      Vol:
    E83-C No:6
      Page(s):
    860-868

    We have reviewed recent progress on arrayed waveguide gratings for DWDM applications. AWGs can be used to realize not only mux/demux filters with various channel spacings, but also highly integrated optical components.

  • Generation of Wideband and Flat Supercontinuum over a 280-nm Spectral Range from a Dispersion-Flattened Optical Fiber with Normal Group-Velocity Dispersion

    Fumio FUTAMI  Yuichi TAKUSHIMA  Kazuro KIKUCHI  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E82-B No:8
      Page(s):
    1265-1272

    Aiming at wideband and flat supercontinuum generation (SC) from optical fibers in the 1.55-µm wavelength region, we study both experimentally and theoretically how SC spectra are influenced by group-velocity dispersion (GVD) of fibers. In the anomalous GVD region, since the peak power of pump pulses is kept high during propagation through the fiber by the higher-order soliton effect, the Raman effect has an adverse effect to flat and wideband SC generation. In the zero GVD region, the interplay of the third-order dispersion (TOD) and the self-phase modulation splits the SC spectrum into two main components. On the other hand, in the normal GVD region, nevertheless the SC spectrum broadens wider and smoother than those in anomalous and zero GVD regions, it is still asymmetric when TOD of the fiber can not be ignored. From these results, we find that a dispersion-flattened fiber with normal GVD is the most suitable for flat and wideband SC generation. A 280-nm wide SC spectrum with the spectral-density fluctuation less than 10 dB is actually generated from such a fiber.

  • Generation of Wideband and Flat Supercontinuum over a 280-nm Spectral Range from a Dispersion-Flattened Optical Fiber with Normal Group-Velocity Dispersion

    Fumio FUTAMI  Yuichi TAKUSHIMA  Kazuro KIKUCHI  

     
    INVITED PAPER-Optical Fibers and Cables

      Vol:
    E82-C No:8
      Page(s):
    1531-1538

    Aiming at wideband and flat supercontinuum generation (SC) from optical fibers in the 1.55-µm wavelength region, we study both experimentally and theoretically how SC spectra are influenced by group-velocity dispersion (GVD) of fibers. In the anomalous GVD region, since the peak power of pump pulses is kept high during propagation through the fiber by the higher-order soliton effect, the Raman effect has an adverse effect to flat and wideband SC generation. In the zero GVD region, the interplay of the third-order dispersion (TOD) and the self-phase modulation splits the SC spectrum into two main components. On the other hand, in the normal GVD region, nevertheless the SC spectrum broadens wider and smoother than those in anomalous and zero GVD regions, it is still asymmetric when TOD of the fiber can not be ignored. From these results, we find that a dispersion-flattened fiber with normal GVD is the most suitable for flat and wideband SC generation. A 280-nm wide SC spectrum with the spectral-density fluctuation less than 10 dB is actually generated from such a fiber.

  • New Quasi-Synchronous Sequences for CDMA Slotted ALOHA Systems

    Masato SAITO  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER

      Vol:
    E81-A No:11
      Page(s):
    2274-2280

    One of unique features of CDMA slotted ALOHA (CDMA S-ALOHA) is that user must synchronize his transmission to given slot. Thus orthogonal sequence as spreading sequence would achieve ideal throughput if each of packets accomplish perfect synchronization. In the presence of any ambiguity in synchronizations, however, quasi-synchronous (QS) sequences suit well with CDMA S-ALOHA system. In this paper, we introduce new QS-sequences obtained from the orthogonal Gold sequences and discuss their performance when applying to CDMA S-ALOHA systems. As a result, withstanding to access timing error, good performance is ensured with this sequence under the environment of AWGN, MAI (multiple access interference) and frequency non-selective fading, that is, micro or pico cellular systems and indoor wireless LANs.

  • Statistical Distributions of Rician Factor for Radio LOS Propagation in Urban Microcells

    Jenn-Hwan TARNG  Kung-Min JU  

     
    LETTER-Antennas and Propagation

      Vol:
    E81-B No:6
      Page(s):
    1283-1285

    The Rician factor is an important parameter in evaluating the outage probability and reuse distance of cellular systems. From the measurement of 1. 8 GHz radio propagation in outdoor urban microcells, it is found that the measured pdf of the Rician factor for low tier systems follows a lognormal distribution and the factor is independent on the propagation distance.

  • A Simple Transmit/Receive Antenna Diversity for Indoor DS/CDMA Wireless Communication Systems

    Koichiro BAN  Masaaki KATAYAMA  Takaya YAMAZATO  Akira OGAWA  

     
    PAPER-Radio Communication

      Vol:
    E80-B No:12
      Page(s):
    1790-1796

    This paper proposes a direct-sequence spread spectrum (DS/SS) communication system with a new diversity technique designed for indoor multi-path fading channels where path diversity isn't available. In this system, the transmitter sends a same signal from multiple antennas at the same time with intentional time delays, which allows the receiver to distinguish and combine the signals from different antennas. We also consider the combination of this scheme with the conventional receiving antenna diversity for additional diversity gain. Furthermore, it is found that the use of the multiple transmitting antennas decreases the effect of the multiple access interference.

41-60hit(65hit)