The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] flat(65hit)

61-65hit(65hit)

  • Fast Frequency-Hopped MFSK with Multi-Antenna Transmission Diversity System for Indoor Radio Channel

    Jun PENG  Masao NAKAGAWA  

     
    PAPER-Indoor Wireless Systems

      Vol:
    E79-B No:9
      Page(s):
    1366-1370

    ISM band has been approved for spread spectrum communication in radio LAN in Japan since December 1992. This frequency band extends from 2.474 GHz to 2.5 GHz with 26 MHz bandwide. In an indoor environment, the maximum observed delay spread is 100-200 ns in a room, it is too short to generate a selective fading, thus flat fading conditions are often observed. Serve as an alleviation, we propose a new system of multi-antenna in base station (BS) and single antenna in mobile station (MS). In this system, MS should have a simple structure for its small size and energy-saving.

  • Microwave Power Absorption in a Cylindrical Model of Man in the Presence of a Flat Reflector

    Shuzo KUWANO  Kinchi KOKUBUN  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E78-B No:11
      Page(s):
    1548-1550

    This letter describes the power absorption of a cylindrical man model placed near a flat reflector exposed to TE microwave. The numerical results show that the absorption is in some cases an order of magnitude or more greater than that of the man model without a reflector.

  • Portable Digital Satellite News Gathering (SNG) RF Terminal Using a Flat Antenna

    Takao MURATA  Hideo MITSUMOTO  Masaru FUJITA  Shoji TANAKA  Kouichi TAKANO  Kazuo IMAI  Noboru TOYAMA  

     
    PAPER

      Vol:
    E77-B No:12
      Page(s):
    1501-1510

    Error-correction techniques can be used to reduce the required carrier-to-noise ratio (C/N) in digital satellite news gathering (SNG) systems. The required e.i.r.p. of a digital SNG terminal is smaller than that of conventional analog SNG RF terminals. In this paper, a Ku-band portable SNG RF terminal using a flat antenna is proposed to make the best use of these digital systems. This portable terminal uses 16 planar microstrip subarray antennas, each with a solid-state power amplifier (SSPA) mounted on its backside. The proposed RF terminal is distinctly different from a conventional RF terminal with a parabolic antenna in two ways; it is portable and it has electronic tracking capability. Electronic antenna tracking reduces the terminal setup time because precise alignment of the antenna with the satellite is not required. This paper first describes the system concept and discusses the design concept. Secondly, it then explains phase shifters and feedback loops for electronic tracking. The tracking performance of a feedback system using four subarrays is also presented with some comparisons between theoretical and measured results. Experimental results for the low side-lobe flat antenna and the SSPAs are then presented. These are the most important components of the system. The flat antenna meets the design objectives specified by ITU-R Recommendations. By orthogonally exciting the rectangular patch antenna, the flat antenna is capable of operating dual polarizations and dual frequencies (transmit/vertical polarization: 14GHz; receive/horizontal polarization: 12GHz). The SSPAs have an efficiency of 21% and an output power of 5W.

  • Fabrication of All-Epitaxial High-Tc SIS Tunnel Structures

    Yasuo TAZOH  Junya KOBAYASHI  Masashi MUKAIDA  Shintaro MIYAZAWA  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1199-1203

    Fabrication of all-epitaxial high-Tc SIS tunnel junctions requires an atomically flat superconducting thin film to be grown and a proper insulating material to be selected. First, we study the initial growth mode of YBCO thin films and show that reducing the growth rate results in a very smooth surface. Second, perovskite-related compound oxides, PrGaO3 and NdGaO3, which have a small lattice mismatch with YBCO and good wetability, are shown to be promising insulating materials for all-epitaxial SIS tunnel junctions. We believe that these concepts will be useful in the development of all-epitaxial high-Tc SIS tunnel junctions with good electrical properties.

  • A Fast Convergence Algorithm for Adaptive FIR Filters with Sparse Taps

    Akihiko SUGIYAMA  Shigeji IKEDA  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E77-A No:4
      Page(s):
    681-687

    This paper proposes a fast convergence algorithm for adaptive FIR filters with sparse taps. Coefficient values and positions are simultaneously controlled. The proposed algorithm consists of two stages: flat-delay estimation and tapposition control with a constraint. The flat-delay estimation is carried out by estimating the significant dispersive region of the impulse response. The constrained tap-position control is achieved by imposing a limit on the new-tap-position search. Simulation results show that the proposed algorithm reduces the convergence speed by up to 85% over the conventional algorithms for a white signal input. For a colored signal, it also converges in 40% of the convergence time by the conventional algorithms. The proposed algorithm is applicable to adaptive FIR filters which are to model a path with long flat delay, such as echo cancelers for satellite-link communications.

61-65hit(65hit)