The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] flat(65hit)

21-40hit(65hit)

  • Electrical and Structural Properties of Metal-Oxide-Semiconductor (MOS) Devices with Pt/Ta2O5 Gate Stacks

    Hoon-Ki LEE  S.V. Jagadeesh CHANDRA  Kyu-Hwan SHIM  Jong-Won YOON  Chel-Jong CHOI  

     
    BRIEF PAPER

      Vol:
    E94-C No:5
      Page(s):
    846-849

    We fabricated metal-oxide-semiconductor (MOS) devices with Pt/Ta2O5 gate stacks and investigated their electrical and structural properties. As increasing RF magnetron sputter-deposition time of Ta2O5 film, the values of equivalent oxide thickness (EOT) and flat band voltage (VFB) increase whilst the density of interfacial trap (Dit) gradually decreases. The effective metal work function (Φm,eff) of Pt metal gate, extracted from the relations of EOT versus VFB are calculated to be ∼5.29 eV, implying that Fermi-level pinning in Ta2O5 gate dielectric is insignificant.

  • Several Types of Antennas Composed of Microwave Metamaterials Open Access

    Tie Jun CUI  Xiao-Yang ZHOU  Xin Mi YANG  Wei Xiang JIANG  Qiang CHENG  Hui Feng MA  

     
    INVITED PAPER

      Vol:
    E94-B No:5
      Page(s):
    1142-1152

    We present a review of several types of microwave antennas made of metamaterials, including the resonant electrically small antennas, metamaterial-substrate patch antennas, metamaterial flat-lens antennas, and Luneburg lens antennas. In particular, we propose a new type of conformal antennas using anisotropic zero-index metamaterials, which have high gains and low sidelobes. Numerical simulations and experimental results show that metamaterials have unique properties to design new antennas with high performance.

  • A Study on Wear of Brush and Carbon Flat Commutator of DC Motor for Automotive Fuel Pump

    Koichiro SAWA  Takahiro UENO  Hidenori TANAKA  

     
    PAPER

      Vol:
    E93-C No:9
      Page(s):
    1443-1448

    In an automotive fuel pump system, a small DC motor is widely used to drive the pump and driven by a automotive battery. Recently a bio-fuel, usually a mixture of gasoline and ethanol has been used due to shortage of gasoline and environmental aspect. It affects strongly the performances of a DC motor, especially commutation phenomena, what kind of fuel is used. Therefore the authors have started to investigate the influence of ethanol on the commutation phenomena. They have been reporting the wear of brush and carbon flat commutator in gasoline and ethanol so far. In this paper commutation period, arc duration, brush and commutator wear are examined in ethanol 50-gasoline 50%. Brush wears are very small compared with the previous results. Namely in the present test a mechanical sliding wear is predominant rather than erosion by arc due to short arc duration. Further, an area eroded by arc is observed to re-appear as a sliding surface. From these results a threshold arc energy between arc erosion and mechanical sliding wear is obtained, and a wear model is proposed to explain the above wear pattern on the sliding surface.

  • Multiple-Rate Quasi-Cyclic LDPC Codes Based on Euclidean Geometries

    Xueqin JIANG  Moon Ho LEE  Tae Chol SHIN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:4
      Page(s):
    997-1000

    This letter presents an approach to the construction of multiple-rate quasi-cyclic (QC) low-density parity-check (LDPC) codes based on hyperplanes (µ-flats) of two different dimensions in Euclidean geometries. The codes constructed with this method have the same code length, multiple-rate and large stopping sets while maintaining the same basic hardware architecture. The code performance is investigated in terms of the bit error rate (BER) and compared with those of the LDPC codes which are proposed in IEEE 802.16e standard. Simulation results show that our codes perform very well and have low error floors over the AWGN channel.

  • Data Analysis Technique of Atomic Force Microscopy for Atomically Flat Silicon Surfaces

    Masahiro KONDA  Akinobu TERAMOTO  Tomoyuki SUWA  Rihito KURODA  Tadahiro OHMI  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    664-670

    A data analysis technology of atomic force microscopy for atomically flat silicon surfaces has been developed. Atomically flat silicon surfaces composed of atomic terraces and steps are obtained on (100) orientation 200 mm diameter wafers by annealing in pure argon ambience at 1,200 for 30 minutes. Atomically flat silicon surfaces are lead to improve the MOS inversion layer mobility and current drivability of MOSFETs and to decrease the fluctuations in electrical characteristics of MOSFETs. It is important to realize the technology that evaluates the flatness and the uniformity of atomically flat silicon surfaces. The off direction angle is calculated by using two straight edge lines selected from measurement data. And the off angle is calculated from average atomic terrace width under assumption that height difference between neighboring terraces is equal to the step height, 0.135 nm, of (100) silicon surface. The analyzing of flatness of each terrace can be realized by converting the measurement data using the off direction angle and the off angle. And, the average roughness of each terrace is about 0.017-0.023 nm. Therefore, the roughness and the uniformity of each terrace can be evaluated by this proposed technique.

  • Discrete Wirtinger-Type Inequalities for Gauging the Power of Sinusoids Buried in Noise

    Saed SAMADI  Kaveh MOLLAIYAN  Akinori NISHIHARA  

     
    PAPER

      Vol:
    E92-A No:3
      Page(s):
    722-732

    Two discrete-time Wirtinger-type inequalities relating the power of a finite-length signal to that of its circularly-convolved version are developed. The usual boundary conditions that accompany the existing Wirtinger-type inequalities are relaxed in the proposed inequalities and the equalizing sinusoidal signal is free to have an arbitrary phase angle. A measure of this sinusoidal signal's power, when corrupted with additive noise, is proposed. The application of the proposed measure, calculated as a ratio, in the evaluation of the power of a sinusoid of arbitrary phase with the angular frequency π/N, where N is the signal length, is thoroughly studied and analyzed under additive noise of arbitrary statistical characteristic. The ratio can be used to gauge the power of sinusoids of frequency π/N with a small amount of computation by referring to a ratio-versus-SNR curve and using it to make an estimation of the noise-corrupted sinusoid's SNR. The case of additive white noise is also analyzed. A sample permutation scheme followed by sign modulation is proposed for enlarging the class of target sinusoids to those with frequencies M π/N, where M and N are mutually prime positive integers. Tandem application of the proposed scheme and ratio offers a simple method to gauge the power of sinusoids buried in noise. The generalization of the inequalities to convolution kernels of higher orders as well as the simplification of the proposed inequalities have also been studied.

  • Surface Conduction Electron Emission from ZnO Film

    Shengli WU  Chengli WANG  Jintao ZHANG  Wenbo HU  Chunliang LIU  

     
    LETTER

      Vol:
    E91-C No:10
      Page(s):
    1554-1556

    The properties of the surface-conduction electron-emitter display (SED) are mainly decided by the surface-conduction electron emitters (SCE), which are normally made from the expensive metal Pd. In this study, we propose to use metal Zn instead of Pd as the emitter material. Both the device electrode and ZnO thin film are deposited by a sputter, and the electron emitters (SCE) are formed by the electro-forming process. The electron emission characteristic is obtained and the luminescence is observed.

  • Multi-Level Confined Error Diffusion Algorithm for Flat Panel Display

    JunHak LEE  Takahiko HORIUCHI  Shoji TOMINAGA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:1
      Page(s):
    62-69

    The reduction of a structural pattern at specific gray levels or at the special condition of image data has mainly been discussed in digital halftone methods. This problem is more severe in some flat panel displays because their black levels typically are brighter than other displays blocks. The authors proposed an advanced confined error diffusion (ACED) algorithm which was a well-organized halftone algorithm for flat panel devices. In this paper, we extend the ACED algorithm to the multi-level systems, which are capable of displaying more than 2 levels. Our extension has two merits for the hardware implementation. First, it can be processed in real time using the look-up table based method. The second one is the flexibility of selecting the used gray level. This paper discusses the performance of the proposed algorithms with experimental results for natural test images.

  • A Novel Defected Elliptical Pore Photonic Crystal Fiber with Ultra-Flattened Dispersion and Low Confinement Losses

    Nguyen Hoang HAI  Yoshinori NAMIHIRA  Feroza BEGUM  Shubi KAIJAGE  S.M. Abdur RAZZAK  Tatsuya KINJO  Nianyu ZOU  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:8
      Page(s):
    1627-1633

    This paper reports a novel design in Photonic Crystal Fibers (PCFs) with nearly zero ultra-flattened dispersion characteristics. We describe the chromatic dispersion controllability taking non-uniform air hole structures into consideration. Through optimizing non-uniform air hole structures, the ultra-flattened zero dispersion PCFs can be efficiently designed. We show numerically that the proposed non-uniform air cladding structures successfully archive flat dispersion characteristics as well as extremely low confinement losses. As an example, the proposed PCF with flattened dispersion of 0.27 ps/(nmkm) from 1.5 µm to 1.8 µm wavelength with confinement losses of less than 10-11 dB/m. Finally, we point out that full controllability of the chromatic dispersion and confinement losses, along with the fabrication technique, are the main advantages of the proposed PCF structure.

  • 3D Error Diffusion Method Based on Edge Detection for Flat Panel Display

    Zujun LIU  Chunliang LIU  Shengli WU  

     
    LETTER-Electronic Displays

      Vol:
    E89-C No:10
      Page(s):
    1485-1486

    A 3 dimensional (3D) error diffusion method based on edge detection for flat panel display (FPD) is presented. The new method diffuses errors to the neighbor pixels in current frame and the neighbor pixel in the next frame. And the weights of error filters are dynamically adjusted based on the results of edge detection in each pixel's processing, which makes the weights coincide with the local edge feathers of input image. The proposed method can reduce worm artifacts and improve reproduction precision of image details.

  • A Simplified Autocorrelation-Based Single Frequency Estimator

    Young-Hwan YOU  Dae-Ki HONG  Sung-Jin KANG  Jang-Yeon LEE  Jin-Woong CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2096-2098

    This letter proposes a low-complexity single frequency estimator for flat fading channels. The simplified estimator decreases the number of computations in the calculation of the autocorrelation function (AF) when compared to AF-based conventional estimators. The simplified estimator yields a comparable estimation performance to the existing estimators, while retaining the same frequency range.

  • On Reconfiguring Radial Trees

    Yoshiyuki KUSAKARI  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1207-1214

    A linkage is a collection of line segments, called bars, possibly joined at their ends, called joints. We consider flattening a tree-like linkage, that is, a continuous motion of their bars from an initial configuration to a final configuration looking like a"straight line segment," preserving the length of each bar and not crossing any two bars. In this paper, we introduce a new class of linkages, called "radial trees," and show that there exists a radial tree which cannot be flattened.

  • Cut-Off Rate of Multiple Antenna Systems over Frequency-Flat, Fast Fading Channels

    Sungchung PARK  Kwyro LEE  Sin-Chong PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:4
      Page(s):
    1440-1442

    For multilevel-coded modulation, the cut-off rate of multiple antenna systems over frequency-flat, fast fading channels is derived. Following Wozencraft's approach, a closed-form expression for the cut-off rate is obtained as a function of energy ratio per dimension It is shown that the maximum value of cut-off rate increases linearly with the number of transmit antennas.

  • On-Chip Thermal Gradient Analysis and Temperature Flattening for SoC Design

    Takashi SATO  Junji ICHIMIYA  Nobuto ONO  Koutaro HACHIYA  Masanori HASHIMOTO  

     
    PAPER-Prediction and Analysis

      Vol:
    E88-A No:12
      Page(s):
    3382-3389

    This paper quantitatively analyzes thermal gradient of SoC and proposes a thermal flattening procedure. First, the impact of dominant parameters, such as area occupancy of memory/logic block, power density, and floorplan on thermal gradient are studied quantitatively. Temperature difference is also evaluated from timing and reliability standpoints. Important results obtained here are 1) the maximum temperature difference increases with higher memory area occupancy and 2) the difference is very floorplan sensitive. Then, we propose a procedure to amend thermal gradient. A slight floorplan modification using the proposed procedure improves on-chip thermal gradient significantly.

  • Flat-Topped Spectral Response in a Ladder-Type Interferometric Filter

    Seok-Hwan JEONG  Shinji MATSUO  Yuzo YOSHIKUNI  Toru SEGAWA  Yoshitaka OHISO  Hiroyuki SUZUKI  

     
    PAPER-Optoelectronics

      Vol:
    E88-C No:8
      Page(s):
    1747-1754

    We propose and demonstrate a novel ladder interferometric filter that exhibits flat-topped spectral response for use in wavelength-division-multiplexing (WDM) based photonic networks. We numerically analyze the flattened spectral response in a ladder-type filter by modifying the transfer matrix of ladder interferometer. Conventional parabolic-shaped and flat-topped-designed ladder interferometric filters are fabricated, and characterized. We demonstrate a flat-topped filter response in the fabricated device. The shape factor, which is defined by the ratio of -1 dB bandwidth to -10 dB bandwidth, is improved from 0.32 to 0.54. The tunability and the increase in filter extinction ratio of the proposed device are also discussed.

  • Flat-Panel Imager Utilizing a-Si TFT Array Technology

    Osamu TERANUMA  Yoshihiro IZUMI  Masayuki TAKAHASHI  Tamotsu SATO  Kazuhiro UEHARA  Hisao OKADA  Yasukuni YAMANE  

     
    INVITED PAPER

      Vol:
    E87-C No:11
      Page(s):
    1948-1953

    We have developed a two-dimensional flat-panel imager (FPI) utilizing conventional amorphous silicon (a-Si) thin film transistor (TFT) technology for AM-LCDs, and we have made a prototype. We can experimentally manufacture the FPI basically by utilizing conventional production lines of AM-LCDs, because the imager is based on the TFT array for AM-LCDs. The TFT performs both switching and photo-detecting functions itself. Using the FPI, we can capture monochrome images in real time, and can also achieve full-color images by introducing time-sequential driving based on a color backlight system with RGB-LEDs. The reliability of the TFT under bias and irradiation stress caused by capturing images is maintained by introducing an original driving method and processing the captured image. By making use of advantages the FPI has over conventional imaging systems, we hope that the FPI will be a useful compact imaging device for documents, pictures, fingerprints, and the like.

  • Characteristics of Flat Commutator on DC Motor for Automotive Fuel Pump

    Takashi SHIGEMORI  Koichiro SAWA  

     
    PAPER-New Technology and Automotive Applications

      Vol:
    E87-C No:8
      Page(s):
    1255-1260

    Automotive fuel pumps are driven by small DC motor. Commutation is carried out in gasoline, and arc voltage and duration are different from that in air. Our laboratory have analyzed commutation phenomenon in gasoline quantitatively and we have considered brush materials. To develop high power motor, we need to examine materials that are less arc abrasion and good sliding condition. In this research, we attend to characteristics of flat carbon commutator. As a result, it is possible to drive longer time, like established cylindrical copper commutator.

  • Design of FIR Digital Differentiators Using Maximal Linearity Constraints

    Ishtiaq Rasool KHAN  Masahiro OKUDA  Ryoji OHBA  

     
    PAPER-Filter Design

      Vol:
    E87-A No:8
      Page(s):
    2010-2017

    Classical designs of maximally flat finite impulse response digital filters need to perform inverse discrete Fourier transformation of the frequency responses, in order to calculate the impulse response coefficients. Several attempts have been made to simplify the designs by obtaining explicit formulas for the impulse response coefficients. Such formulas have been derived for digital differentiators having maximal linearity at zero frequency, using different techniques including interpolating polynomials and the Taylor series etc. We show that these formulas can be obtained directly by application of maximal linearity constraints on the frequency response. The design problem is formulated as a system of linear equations, which can be solved to achieve maximal linearity at an arbitrary frequency. Certain special characteristics of the determinant of the coefficients matrix of these equations are explored for designs centered at zero frequency, and are used in derivation of explicit formulas for the impulse response coefficients of digital differentiators of both odd and even lengths.

  • Design of Lower-Order IIR Digital Low-Pass Filters with Flat Monotonic Passbands and Equiripple Stopbands

    Yoshiro SUHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E87-A No:4
      Page(s):
    856-863

    An IIR digital low pass filter with flat monotonic passband, equiripple stopband and narrower transition bandwidth than that of Inverse Chebyshev digital filters of the same order is designed. The requisite equiripple stopband is realized by designing the filter in Deczkeys' w-plane. The characteristic functions are designed so as to have a root of multiplicity n at ω = 0 to ensure the n degree of flatness of the passband, and to have a pair of complex conjugate roots with coordinates constrained such that the magnitude response of the passband attenuates monotonically. The freedom in the coordinate of the complex conjugate roots is exploited to minimize the transition bandwidth. The equations are derived that give the minimum transition bandwidth of the proposed filter, which is considerably narrower than that of Inverse Chebyshev filters. It is showen through practical numerical examples that the order of the proposed filter is as low as half that of the Inverse Chebyshev filter satisfying the same specification.

  • Highly Nonlinear Dispersion-Flattened Polarization-Maintaining Photonic Crystal Fiber in 1.55 µm Region

    Takashi YAMAMOTO  Hirokazu KUBOTA  Satoki KAWANISHI  Masatoshi TANAKA  Syun-ichiro YAMAGUCHI  

     
    LETTER-Optoelectronics

      Vol:
    E87-C No:2
      Page(s):
    250-252

    We describe the first highly nonlinear dispersion-flattened polarization-maintaining photonic crystal fiber designed for nonlinear optics applications in the 1.55 µm region. The nonlinear coefficient of the fiber is 19 (W-1km-1), which is ten times that of dispersion shifted fiber. The chromatic dispersion and dispersion slope of the fiber at 1.55 µm are -0.23 ps/km/nm and 0.01 ps/km/nm2, respectively. We demonstrate the generation of a supercontinuum using the photonic crystal fiber. A symmetrical supercontinuum over 40 nm is obtained by injecting 1562 nm, 2.2 ps, and 40 GHz optical pulses into the 200 m-long photonic crystal fiber.

21-40hit(65hit)