The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] flip-chip bonding(7hit)

1-7hit
  • Design and Fabrication of Large Scale Micro-LED Arrays and Silicon Driver for OEIC Devices

    Sang-Baie SHIN  Ko-Ichiro IIJIMA  Hiroshi OKADA  Sho IWAYAMA  Akihiro WAKAHARA  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    898-903

    In this paper, we designed and fabricated large scale micro-light-emitting-diode (LED) arrays and silicon driver for single chip device for realizing as prototypes of heterogeneous optoelectronic integrated circuits (OEICs). The large scale micro-LED arrays were separated by a dry etching method from mesa structure to 16,384 pixels of 128 128, each with a size of 15 µm in radius. Silicon driver was designed the additional bonding pad on each driving transistor for bonding with micro-LED arrays. Fabricated micro-LED arrays and driver were flip-chip bonded using anisotropic conductive adhesive.

  • Miniaturized Millimeter-Wave Hybrid IC Technology Using Non-Photosensitive Multi-Layered BCB Thin Films and Stud Bump Bonding

    Kazuaki TAKAHASHI  Hiroshi OGURA  Morikazu SAGAWA  

     
    INVITED PAPER-RF Assembly Technology

      Vol:
    E82-C No:11
      Page(s):
    2029-2037

    This paper describes a new millimeter-wave hybrid integrated circuit (HIC) technology which applies a thin film multi-layered dielectric substrate and flip-chip bonding technology employing stud bump bonding (SBB). We have previously proposed and demonstrated a novel HIC structure, named millimeter-wave flip-chip IC, (MFIC), applying an excellent dielectric material of benzocyclobutene (BCB) thin film and flip-chip bonding. In this paper, an advanced thin film multi-layer process using non-photosensitive BCB was newly developed. Characteristics of the transmission lines and the built-in MIM capacitor within the multi-layered structure were discussed. Furthermore, stud bump bonding was newly adapted to the MFIC as a flip-chip method, and the millimeter-wave characteristics of the bumps were examined. Using these technologies, we demonstrate characteristics of a miniaturized 25 GHz down converter MFIC. Our newly proposed HIC structure enabled us to bring down chip size to less than 1/3 of our conventional structure. Finally, we discuss future possibilities for high performance multi-chip-modules (MCMs) using SBB technology as a further improved HIC for compact millimeter-wave radio equipment.

  • Millimeter-Wave Flip-Chip MMIC Structure with High Performance and High Reliability Interconnects

    Masaharu ITO  Kenichi MARUHASHI  Hideki KUSAMITSU  Yoshiaki MORISHITA  Keiichi OHATA  

     
    PAPER-RF Assembly Technology

      Vol:
    E82-C No:11
      Page(s):
    2038-2043

    The flip-chip structure for millimeter-wave MMICs has been investigated to obtain high performance and high reliability. In our approach, an air gap between the MMIC and the alumina substrate was determined so as not to change electrical characteristics from those of the unflipped MMIC. We calculated the proximity effect between the MMIC and the substrate by using 3D-electromagnetic simulator, and found that the air gap should be controlled to be greater than 20 µm. Since the discontinuity of transmission lines at bump interconnects is not negligible above 60 GHz, we constructed the LCR-equivalent circuit for the bump interconnect and confirmed its validity by comparing measurement with calculation. Based on these investigations, the 60- and 76-GHz-band CPW three-stage low noise amplifiers were successfully mounted on the alumina substrate using a thermal compression bonding process. The gain of the flipped 60- and 76-GHz-band MMICs are greater than 18 dB at around 60 GHz and 17 dB at around 76 GHz, respectively. The noise figures are 3.6 dB and 3.9 dB, respectively. The gain and noise performances showed little degradation compared to those of the unflipped MMICs when appropriate bonding conditions are given. We confirmed that the flip-chip structure has high reliability under a thermal cycle test. From these results, flip-chip technology is promising for millimeter-wave applications.

  • Assembly and Electrical Wiring Technologies on Planar Lightwave Circuit (PLC) Platform Providing Hybrid Integration of Optoelectronic Devices and Integrated Circuits (ICs)

    Takaharu OHYAMA  Yuji AKAHORI  Masahiro YANAGISAWA  Hideki TSUNETSUGU  Shinji MINO  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-C No:2
      Page(s):
    370-378

    Optoelectronic hybrid integration is a promising technology for realizing the optical components needed in optical transmission, switching, and interconnection systems that use wavelength division multiplexing (WDM) and time division multiplexing (TDM). We have already developed versatile optical hybrid integrated modules using a silica-based planar lightwave circuit (PLC) platform. However, these modules consist solely of the optoelectronic semiconductor devices such as laser diodes (LDs) and photo diodes (PDs) and monolithic optoelectronic integrated circuits (OEICs). To carry out high-speed and versatile electric signal processing functions in future network systems, it is necessary to install semiconductor electrical integrated circuits (ICs) on a PLC platform. In this paper, we describe novel technologies for high-speed PLC platforms which make it possible to assemble both ICs and optoelectronic devices. Using these technologies, we fabricated a two-channel hybrid integrated optical transmitter module which is hybrid integrated with an LD array chip and an LD driver IC. On this PLC platform, we use microstrip lines (MSLs) to drive the LD driver IC. We also considered the effect of heat interference on the LD array chip caused by the LD driver IC when designing the layout of the chip assembly region. The LD array chip and the LD driver IC were flip-chip bonded with solder bumps of a different material to avoid any deterioration in the coupling efficiency of the LD array chip. The optical transmitter module we fabricated operated successfully at 9 Gbit/s non-return-zero (NRZ) signal. This approach using a PLC platform for the hybrid integration of an LD array chip and an LD driver IC will carry forward the development of high-speed optoelectronic modules with both optical and electrical signal processing functions.

  • Assembly and Electrical Wiring Technologies on Planar Lightwave Circuit (PLC) Platform Providing Hybrid Integration of Optoelectronic Devices and Integrated Circuits (ICs)

    Takaharu OHYAMA  Yuji AKAHORI  Masahiro YANAGISAWA  Hideki TSUNETSUGU  Shinji MINO  

     
    PAPER-Assembly and Packaging Technologies

      Vol:
    E82-B No:2
      Page(s):
    422-430

    Optoelectronic hybrid integration is a promising technology for realizing the optical components needed in optical transmission, switching, and interconnection systems that use wavelength division multiplexing (WDM) and time division multiplexing (TDM). We have already developed versatile optical hybrid integrated modules using a silica-based planar lightwave circuit (PLC) platform. However, these modules consist solely of the optoelectronic semiconductor devices such as laser diodes (LDs) and photo diodes (PDs) and monolithic optoelectronic integrated circuits (OEICs). To carry out high-speed and versatile electric signal processing functions in future network systems, it is necessary to install semiconductor electrical integrated circuits (ICs) on a PLC platform. In this paper, we describe novel technologies for high-speed PLC platforms which make it possible to assemble both ICs and optoelectronic devices. Using these technologies, we fabricated a two-channel hybrid integrated optical transmitter module which is hybrid integrated with an LD array chip and an LD driver IC. On this PLC platform, we use microstrip lines (MSLs) to drive the LD driver IC. We also considered the effect of heat interference on the LD array chip caused by the LD driver IC when designing the layout of the chip assembly region. The LD array chip and the LD driver IC were flip-chip bonded with solder bumps of a different material to avoid any deterioration in the coupling efficiency of the LD array chip. The optical transmitter module we fabricated operated successfully at 9 Gbit/s non-return-zero (NRZ) signal. This approach using a PLC platform for the hybrid integration of an LD array chip and an LD driver IC will carry forward the development of high-speed optoelectronic modules with both optical and electrical signal processing functions.

  • Hybrid Integrated 44 Optical Matrix Switch Module on Silica Based Planar Waveguide Platform

    Tomoaki KATO  Jun-ichi SASAKI  Tsuyoshi SHIMODA  Hiroshi HATAKEYAMA  Takemasa TAMANUKI  Shotaro KITAMURA  Masayuki YAMAGUCHI  Tatsuya SASAKI  Keiro KOMATSU  Mitsuhiro KITAMURA  Masataka ITOH  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    305-312

    The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.

  • Hybrid Integrated 44 Optical Matrix Switch Module on Silica Based Planar Waveguide Platform

    Tomoaki KATO  Jun-ichi SASAKI  Tsuyoshi SHIMODA  Hiroshi HATAKEYAMA  Takemasa TAMANUKI  Shotaro KITAMURA  Masayuki YAMAGUCHI  Tatsuya SASAKI  Keiro KOMATSU  Mitsuhiro KITAMURA  Masataka ITOH  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    357-364

    The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.