The search functionality is under construction.

Keyword Search Result

[Keyword] flooding(25hit)

1-20hit(25hit)

  • Energy-Efficient One-to-One and Many-to-One Concurrent Transmission for Wireless Sensor Networks

    SenSong HE  Ying QIU  

     
    LETTER-Information Network

      Pubricized:
    2023/09/19
      Vol:
    E106-D No:12
      Page(s):
    2107-2111

    Recent studies have shown that concurrent transmission with precise time synchronization enables reliable and efficient flooding for wireless networks. However, most of them require all nodes in the network to forward packets a fixed number of times to reach the destination, which leads to unnecessary energy consumption in both one-to-one and many-to-one communication scenarios. In this letter, we propose G1M address this issue by reducing redundant packet forwarding in concurrent transmissions. The evaluation of G1M shows that compared with LWB, the average energy consumption of one-to-one and many-to-one transmission is reduced by 37.89% and 25%, respectively.

  • HTTP DDoS Flooding Attack Mitigation in Software-Defined Networking

    Sungho PARK  Youngjun KIM  Hyungoo CHOI  Yeunwoong KYUNG  Jinwoo PARK  

     
    LETTER-Information Network

      Pubricized:
    2021/06/04
      Vol:
    E104-D No:9
      Page(s):
    1496-1499

    HTTP Distributed Denial of Service (DDoS) flooding attack aims to deplete the connection resources of a targeted web server by transmitting a massive amount of HTTP request packets using botnets. This type of attack seriously deteriorates the service quality of the web server by tying up its connection resources and uselessly holds up lots of network resources like link capacity and switching capability. This paper proposes a defense method for mitigating HTTP DDoS flooding attack based on software-defined networking (SDN). It is demonstrated in this paper that the proposed method can effectively defend the web server and preserve network resources against HTTP DDoS flooding attacks.

  • An Energy-Efficient Defense against Message Flooding Attacks in Delay Tolerant Networks

    Hiromu ASAHINA  Keisuke ARAI  Shuichiro HARUTA  P. Takis MATHIOPOULOS  Iwao SASASE  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    348-359

    Delay Tolerant Networks (DTNs) are vulnerable to message flooding attacks in which a very large number of malicious messages are sent so that network resources are depleted. To address this problem, previous studies mainly focused on constraining the number of messages that nodes can generate per time slot by allowing nodes to monitor the other nodes' communication history. Since the adversaries may hide their attacks by claiming a false history, nodes exchange their communication histories and detect an attacker who has presented an inconsistent communication history. However, this approach increases node energy consumption since the number of communication histories increases every time a node communicates with another node. To deal with this problem, in this paper, we propose an energy-efficient defense against such message flooding attacks. The main idea of the proposed scheme is to time limit the communication history exchange so as to reduce the volume while ensuring the effective detection of inconsistencies. The advantage of this approach is that, by removing communication histories after they have revealed such inconsistencies, the energy consumption is reduced. To estimate such expiration time, analytical expressions based upon a Markov chain based message propagation model, are derived for the probability that a communication history reveals such inconsistency in an arbitrary time. Extensive performance evaluation results obtained by means of computer simulations and several performance criteria verify that the proposed scheme successfully improves the overall energy efficiency. For example, these performance results have shown that, as compared to other previously known defenses against message flooding attacks, the proposed scheme extends by at least 22% the battery lifetime of DTN nodes, while maintaining the same levels of protection.

  • A Novel Solution to Minimize the Interest Flooding and to Improve the Content-Store Performance for NDN-Based Wireless Sensor Networks

    Muhammad MUDASIR QAZI  Rana ASIF REHMAN  Asadullah TARIQ  Byung-Seo KIM  

     
    LETTER-Information Network

      Pubricized:
    2020/11/30
      Vol:
    E104-D No:3
      Page(s):
    469-472

    Information-centric networking (ICN) provides an alternative to the traditional end-to-end communication model of the current Internet architecture by focusing on information dissemination and information retrieval. Named Data Networking (NDN) is one of the candidates that implements the idea of ICN on a practical level. Implementing NDN in wireless sensor networks (WSNs) will bring all the benefits of NDN to WSNs, making them more efficient. By applying the NDN paradigm directly to wireless multi-hop ad-hoc networks, various drawbacks are observed, such as packet flooding due to the broadcast nature of the wireless channel. To cope with these problems, in this paper, we propose an Interest called the accumulation-based forwarding scheme, as well as a novel content store architecture to increase its efficiency in terms of storing and searching data packets. We have performed extensive simulations using the ndnSIM simulator. Experimental results showed that the proposed scheme performs better when compared to another scheme in terms of the total number of Interests, the content store search time, and the network lifetime.

  • A Lightweight Detection Using Bloom Filter against Flooding DDoS Attack

    Sanghun CHOI  Yichen AN  Iwao SASASE  

     
    PAPER-Information Network

      Pubricized:
    2020/09/14
      Vol:
    E103-D No:12
      Page(s):
    2600-2610

    The flooding DDoS attack is a serious problem these days. In order to detect the flooding DDoS attack, the survival approaches and the mitigation approaches have been investigated. Since the survival approach occurs the burden on the victims, the mitigation approach is mainly studied. As for the mitigation approaches, to detect the flooding DDoS attack, the conventional schemes using the bloom filter, machine learning, and pattern analyzation have been investigated. However, those schemes are not effective to ensure the high accuracy (ACC), the high true positive rate (TPR), and the low false positive rate (FPR). In addition, the data size and calculation time are high. Moreover, the performance is not effective from the fluctuant attack packet per second (pps). In order to effectively detect the flooding DDoS attack, we propose the lightweight detection using bloom filter against flooding DDoS attack. To detect the flooding DDoS attack and ensure the high accuracy, the high true positive rate, and the low false positive rate, the dec-all (decrement-all) operation and the checkpoint are flexibly changed from the fluctuant pps in the bloom filter. Since we only consider the IP address, all kinds of flooding attacks can be detected without the blacklist and whitelist. Moreover, there is no complexity to recognize the attack. By the computer simulation with the datasets, we show our scheme achieves an accuracy of 97.5%. True positive rate and false positive rate show 97.8% and 6.3%, respectively. The data size for processing is much small as 280bytes. Furthermore, our scheme can detect the flooding DDoS attack at once in 11.1sec calculation time.

  • Receiver Performance Evaluation and Fading Duration Analysis for Concurrent Transmission

    Chun-Hao LIAO  Makoto SUZUKI  Hiroyuki MORIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    582-591

    Concurrent transmission (CT) is a revolutionary multi-hop protocol that significantly improves the MAC- and network-layer efficiency by allowing synchronized packet collisions. Although its superiority has been empirically verified, there is still a lack of studies on how the receiver survives such packet collisions, particularly in the presence of the carrier frequency offsets (CFO) between the transmitters. This work rectifies this omission by providing a comprehensive evaluation of the physical-layer receiver performance under CT, and a theoretical analysis on the fading duration of the beating effect resulting from the CFO. The main findings from our evaluations are the following points. (1) Beating significantly affects the receiver performance, and an error correcting mechanism is needed to combat the beating. (2) In IEEE 802.15.4 systems, the direct sequence spread spectrum (DSSS) plays such a role in combatting the beating. (3) However, due to the limited length of DSSS, the receiver still suffers from the beating if the fading duration is too long. (4) On the other hand, the basic M-ary FSK mode of IEEE 802.15.4g is vulnerable to CT due to the lack of error correcting mechanism. In view of the importance of the fading duration, we further theoretically derive the closed form of the average fading duration (AFD) of the beating under CT in terms of the transmitter number and the standard deviation of the CFO. Moreover, we prove that the receiver performance can be improved by having higher CFO deviations between the transmitters due to the shorter AFD. Finally, we estimate the AFD in the real system by actually measuring the CFO of a large number of sensor nodes.

  • Detect and Prevent SIP Flooding Attacks in VoLTE by Utilizing a Two-Tier PFilter Design

    Na RUAN  Mingli WU  Shiheng MA  Haojin ZHU  Weijia JIA  Songyang WU  

     
    PAPER-Operating system and network Security

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2287-2294

    As a new generation voice service, Voice over LTE (VoLTE) has attracted worldwide attentions in both the academia and industry. Different from the traditional voice call based on circuit-switched (CS), VoLTE evolves into the packet-switched (PS) field, which has long been open to the public. Though designed rigorously, similar to VoIP services, VoLTE also suffers from SIP (Session Initiation Protocal) flooding attacks. Due to the high performance requirement, the SIP flooding attacks in VoLTE is more difficult to defend than that in traditional VoIP service. In this paper, enlightened by Counting Bloom Filter (CBF), we design a versatile CBF-like structure, PFilter, to detect the flooding anomalies. Compared with previous relevant works, our scheme gains advantages in many aspects including detection of low-rate flooding attack and stealthy flooding attack. Moreover, not only can our scheme detect the attacks with high accuracy, but also find out the attackers to ensure normal operation of VoLTE by eliminating their negative effects. Extensive experiments are performed to well evaluate the performance of the proposed scheme.

  • Minimizing Re-Transmissions (MRT) for Broadcast Traffic in Ad Hoc Wireless Networks

    Nguyen Xuan TIEN  Jong Myung RHEE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:1
      Page(s):
    257-268

    Broadcasting is the process of sending a message from one node to all the other nodes in a network. Simple flooding is the simplest form of broadcasting in ad hoc wireless networks. Simple flooding provides important control, route discovery, and network information update functionality for unicast and multicast protocols. However, simple flooding generates too many broadcast message duplications in ad hoc wireless networks. Minimum spanning tree (MST)-based flooding has traditionally been used in networks to reduce the broadcast duplications by determining broadcast trees using global topology information. However, MST-based flooding still generates a lot of broadcast traffic duplications. In this paper, we propose an efficient type of flooding, called “minimizing re-transmissions” (MRT), to significantly reduce the broadcast duplications. The purpose of MRT is to minimize the number of retransmitting nodes in an ad hoc wireless network based on the network's link state information. This advantage of minimizing the number of retransmitting nodes significantly reduces broadcast message duplications in ad hoc wireless networks. The performance of MRT is analyzed, evaluated, and compared to that of the simple flooding and the MST-based flooding. Simulations are conducted using the OMNet++ Simulator in order to validate the traffic performance analysis. For our sample network, analytical and simulation results show that MRT reduces broadcast message duplications by about 80% compared to simple flooding and by about 68% compared to MST-based flooding, thus saving a significant amount of network bandwidth and energy. MRT can be used in static or mobile ad hoc wireless networks and in wired networks to implement scalable broadcast communications.

  • GRMR: Greedy Regional Multicast Routing for Wireless Sensor Networks

    Shimin SUN  Li HAN  Sunyoung HAN  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    21-29

    Information Centric Networking (ICN) is a promising architecture as an alternative paradigm to traditional IP networking. The innovative concepts, such as named data, name-based routing, and in-network caching bring lots of benefits to Wireless Sensor Networks (WSNs). Simple and robust communication model of ICN, based on interest/data messages exchange, is appealing to be deployed in WSNs. However, ICN architectures are designed for power supplied network devices rather than resource-constrained sensor nodes. Introducing ICN-liked architecture to WSNs needs to rethink the naming scheme and forwarding strategy to meet the requirements of energy efficiency and failure recovery. This paper presents a light weight data centric routing mechanism (GRMR) for interest dissemination and data delivery in location-aware WSNs. A simple naming scheme gives assistance for routing decision by individual nodes. Greedy routing engaging with regional multicast mechanism provides an efficient data centric routing approach. The performance is analytically evaluated and simulated in NS-2. The results indicate that GRMR achieves significant energy efficiency under investigated scenarios.

  • ACK Loss-Aware RTO Calculation Algorithm over Flooding-Based Routing Protocols for UWSNs

    Sungwon LEE  Dongkyun KIM  

     
    LETTER-Information Network

      Pubricized:
    2014/08/22
      Vol:
    E97-D No:11
      Page(s):
    2967-2970

    In typical end-to-end recovery protocols, an ACK segment is delivered to a source node over a single path. ACK loss requires the source to retransmit the corresponding data packet. However, in underwater wireless sensor networks which prefer flooding-based routing protocols, the source node has redundant chances to receive the ACK segment since multiple copies of the ACK segment can arrive at the source node along multiple paths. Since existing RTO calculation algorithms do not consider inherent features of underlying routing protocols, spurious packet retransmissions are unavoidable. Hence, in this letter, we propose a new ACK loss-aware RTO calculation algorithm, which utilizes statistical ACK arrival times and ACK loss rate, in order to reduce such retransmissions.

  • Randomized Search Strategy for Unstructured P2P Networks

    Wei-Mei CHEN  Kuang-Chu LIU  

     
    LETTER-Network

      Vol:
    E95-B No:1
      Page(s):
    289-292

    P2P (peer-to-peer) file sharing systems have been in operation for years. However, recent studies show that many peers in P2P networks are free-riders, who download files but are unwilling to share. This paper proposes a randomized search algorithm that considers the potential of a peer for information exchange and controlled query forwarding in the search process. Based on churn situations, the simulation results in this study demonstrate that the proposed algorithm can reduce network traffic and search latency while searching for files in the system.

  • FSRS Routing Method for Energy Efficiency through the New Concept of Flooding Restriction in Wireless Ad-Hoc Networks

    Jangsu LEE  Sungchun KIM  

     
    PAPER-Network

      Vol:
    E94-B No:11
      Page(s):
    3037-3048

    In MANET (Mobile Ad-hoc NETworks), there are two kinds of routing methods: proactive and reactive. Each has different characteristics and advantages. The latter generally employs the flooding technique to finding a routing path to the destination. However, flooding has big overheads caused by broadcasting RREQ packets to the entire network. Therefore, reducing this overhead is really needed to enable several network efficiencies. Previous studies introduced many approaches which are mainly concerned with the restriction of flooding. However, they usually configure the detailed routing path in the forward flooding procedure and ignore the factors causing the flooding overheads. In this paper, we propose the FSRS (First Search and Reverse Setting) routing protocol which is a new approach in flooding techniques and a new paradigm shift. FSRS is based on cluster topology and is composed of two main mechanisms: inter-cluster and intra-cluster flooding. Inter-cluster routing floods RREQ packets between cluster units and sets a cluster path. When the destination node receives the RREQ packet, it floods RREP packets to an intra-cluster destination which is a gateway to relay the RREP packet to a previous cluster. This is called intra-cluster routing. So to speak, a specific routing path configuration progresses in the RREP process through the reverse cluster path. Consequently, FSRS is a new kind of hybrid protocol well adapted to wireless ad-hoc networks. This suggests a basic wireless networking architecture to make a dynamic cluster topology in future work. In the simulation using NS-2, we compare it to several other protocols and verify that FSRS is a powerful protocol. In the result of the simulation, FSRS conserves energy by a maximum of 12% compared to HCR.

  • Dynamic Multipoint Relay Candidate Selection for Broadcast Data Aggregation in Mobile Ad-Hoc Networks

    Hyung-Weon CHO  Jong-Moon CHUNG  Myunghwan SEO  Jongho PARK  Jihyoung AHN  Bumkwi CHOI  Tae-Jin LEE  

     
    LETTER-Network

      Vol:
    E94-B No:9
      Page(s):
    2629-2633

    In OLSR, only selected multipoint relays (MPRs) are allowed to forward broadcast data during the flooding process, which reduces the message propagation overhead compared to the classical flooding mechanism. Since every node in a network selects its own MPRs independently, many nodes may be MPRs of other nodes, which results in many collisions in the medium access control (MAC) layer under heavy traffic conditions. In this paper, we propose an MPR candidate selection mechanism for broadcast data aggregation in mobile ad-hoc networks. The proposed MPR candidate selection scheme can reduce the number of MPR candidates and appropriately spread MPR candidates over the whole network area. The performance of the proposed MPR candidate selection mechanism is investigated via mathematical analysis and simulations. We also propose a broadcast data aggregation mechanism to achive efficient resource utilization. Performance evaluation indicates that the proposed MPR candidate selection and broadcast data aggregation mechanism is efficient under heavy broadcast traffic load conditions.

  • Distributed Stable Flooding Using Delay Function Based on Redundancy

    Wonjong NOH  

     
    LETTER-Network

      Vol:
    E92-B No:12
      Page(s):
    3923-3926

    In this work, we propose a delayed data forwarding scheme using delay function. According to the link status and network topology, each node gives arrived packets some delay before forwarding them so that the packet flows through the most stable route. We first propose conservative delay function from strict end-to-end delay bound and then relax it more and more and finally introduce a SNR based delay function using cross-layer concept between link layer and network layer. We show its performance by some analysis and simulation in mesh networks. This scheme is useful for stable data routing in highly dynamic networks.

  • Towards an Efficient Flooding Scheme Exploiting 2-Hop Backward Information in MANETs

    Trong Duc LE  Hyunseung CHOO  

     
    PAPER-Network

      Vol:
    E92-B No:4
      Page(s):
    1199-1209

    Flooding is an indispensable operation for providing control or routing functionalities to mobile ad hoc networks (MANETs). Previously, many flooding schemes have been studied with the intention of curtailing the problems of severe redundancies, contention, and collisions in traditional implementations. A recent approach with relatively high efficiency is 1HI by Liu et al., which uses only 1-hop neighbor information. The scheme achieves local optimality in terms of the number of retransmission nodes with time complexity Θ(nlog n), where n is the number of neighbors of a node; however, this method tends to make many redundant transmissions. In this paper, we present a novel flooding algorithm, 2HBI (2-hop backward information), that efficiently reduces the number of retransmission nodes and solves the broadcast storm problem in ad hoc networks using our proposed concept, "2-hop backward information." The most significant feature of the proposed algorithm is that it does not require any extra communication overhead other than the exchange of 1-hop HELLO messages but maintains high deliverability. Comprehensive computer simulations show that the proposed scheme significantly reduces redundant transmissions in 1HI and in pure flooding, up to 38% and 91%, respectively; accordingly it alleviates contention and collisions in networks.

  • A Solution for Irregular IP Multicast Packet Flooding -- For Heavy Traffic IP Multicast Communication

    Makoto MISUMI  Shin-ichi NAKAGAWA  Ken-ichi CHINEN  Yoichi SHINODA  Katsunori YAMAOKA  

     
    PAPER

      Vol:
    E92-B No:1
      Page(s):
    68-76

    When an IP Multicast network is constructed on a switch-based network, many IP Multicast packet broadcasts are generated, and these broadcasts cause trouble for all of the other kinds of communication. To solve this problem, implementing IGMP Snooping on various switches has been proposed. However, some switches have insufficient IP Multicast packet-handling capability. This problem is also mentioned in RFC4541. In this paper, we propose the IGMP Snooping Activator (ISA) mechanism as a way to solve the IP Multicast packet-handling problem. The ISA transmits dummy IGMP Queries to maintain the IP Multicast network, and it joins the flooding IP Multicast group to activate IGMP Snooping in switches that are unable to handle IP Multicast packets. The experimental evaluation shows the effectiveness of our proposed method: the network load decreases because of the method's effective restraint of IP Multicast packet flooding.

  • Counter-Based Broadcasting with Hop Count Aware Random Assessment Delay Extension for Wireless Sensor Networks

    Shintaro IZUMI  Takashi TAKEUCHI  Takashi MATSUDA  Hiroshi KAWAGUCHI  Chikara OHTA  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3489-3498

    Broadcasting is an elementary operation in wireless multi-hop networks. Flooding is a simple broadcast protocol but it frequently causes serious redundancy, contention and collisions. Probability based methods are promising because they can reduce broadcast messages without additional hardware and control packets. In this paper, the counter-based scheme which is one of the probability based methods is focused on as a broadcast protocol, and the RAD (Random Assessment Delay) Extension is proposed to improve the original counter-based scheme. The RAD Extension can be implemented without additional hardware, so that the strength of the counter-based scheme can be preserved. In addition, we propose the additional algorithm called Hop Count Aware RAD Extension to establish shorter path from the source node. Simulation results show that both of the RAD Extension and the Hop Count Aware RAD Extension reduce the number of retransmitting nodes by about 10% compared with the original scheme. Furthermore, the Hop Count Aware RAD Extension can establish almost the same path length as the counter-based scheme.

  • Analysis and Proposal of Position-Based Routing Protocols for Vehicular Ad Hoc Networks

    Hiraku OKADA  Akira TAKANO  Kenichi MASE  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1634-1641

    One of the most promising applications of a mobile ad hoc network is a vehicular ad hoc network (VANET). Each vehicle is aware of its position information by GPS or other methods, so position-based routing is a useful approach in VANET. The position-based routing protocol can be classified roughly into a next-hop forwarding method and a directed flooding method. We evaluate performance of both methods by analytic approach and compare them in this paper. From the evaluation results, we conclude that it is effective for the position-based routing to choose either the next-hop forwarding method or the directed flooding method according to the environment. Then we propose the hybrid transmission method which can select one of them according to the environment, and clarify that the proposed method can keep the packet delivery ratio at a high level and reduce the delay time.

  • Adaptive Sector-Based Flooding for Mobile Ad Hoc Networks

    Masashi YOSHIDA  Minoru TERADA  Tetsuya MIKI  

     
    PAPER

      Vol:
    E90-B No:4
      Page(s):
    788-798

    This paper presents sector based flooding (SBF) and adaptive sector-based flooding (ASBF) that are flooding methods for mobile ad hoc networks using position information. SBF, which divides the communication area of a sender node into sectors, allows only the node nearest to a sector representative position in each sector to rebroadcast a packet. SBF is divided into two methods, SBF-1 and SBF-2; the difference is the number of criteria used to decide whether to rebroadcast or to drop the packet. In ASBF, each node selects a flooding method from among SBF-1, SBF-2, and pure flooding, depending on its local node density. The node density is obtained from the distance between the sector representative position and its nearest node. Simulation results show that SBF reduces the number of packet transmissions generated in flooding and ASBF has high packet reachability with few packet transmissions.

  • AntSearch: An Ant Search Algorithm in Unstructured Peer-to-Peer Networks

    Kai-Hsiang YANG  Chi-Jen WU  Jan-Ming HO  

     
    PAPER

      Vol:
    E89-B No:9
      Page(s):
    2300-2308

    The most prevalent peer-to-peer (P2P) application till today is file sharing, and unstructured P2P networks can support inherent heterogeneity of peers, are highly resilient to peers' failures, and incur low overhead at peer arrivals and departures. Dynamic querying (DQ) is a new flooding technique which could estimate a proper time-to-live (TTL) value for a query flooding by estimating the popularity of the searched files, and retrieve sufficient results under controlled flooding range for reducing network traffic. Recent researches show that a large amount of peers in the P2P file sharing system are the free-riders, and queries are seldom hit by those peers. The free-riding problem causes a large amount of redundant messages in the DQ-like search algorithm. In this paper, we proposed a new search algorithm, called "AntSearch," to solve the problem. In AntSearch, each peer maintains its hit rate of previous queries, and records a list of pheromone values of its immediate neighbors. Based on the pheromone values, a query is only flooded to those peers which are not likely to be the free-riders. Our simulation results show that, compared with DQ and its enhanced algorithm DQ+, the AntSearch algorithm averagely reduces 50% network traffic at almost the same search latency as DQ+, while retrieving sufficient results for a query with a given required number of results.

1-20hit(25hit)