The search functionality is under construction.

Keyword Search Result

[Keyword] frequency domain(57hit)

1-20hit(57hit)

  • Prime-Factor GFFT Architecture for Fast Frequency Domain Decoding of Cyclic Codes

    Yanyan CHANG  Wei ZHANG  Hao WANG  Lina SHI  Yanyan LIU  

     
    LETTER-Coding Theory

      Pubricized:
    2023/07/10
      Vol:
    E107-A No:1
      Page(s):
    174-177

    This letter introduces a prime-factor Galois field Fourier transform (PF-GFFT) architecture to frequency domain decoding (FDD) of cyclic codes. Firstly, a fast FDD scheme is designed which converts the original single longer Fourier transform to a multi-dimensional smaller transform. Furthermore, a ladder-shift architecture for PF-GFFT is explored to solve the rearrangement problem of input and output data. In this regard, PF-GFFT is considered as a lower order spectral calculation scheme, which has sufficient preponderance in reducing the computational complexity. Simulation results show that PF-GFFT compares favorably with the current general GFFT, simplified-GFFT (S-GFFT), and circular shifts-GFFT (CS-GFFT) algorithms in time-consuming cost, and is nearly an order of magnitude or smaller than them. The superiority is a benefit to improving the decoding speed and has potential application value in decoding cyclic codes with longer code lengths.

  • Low Complexity Resource Allocation in Frequency Domain Non-Orthogonal Multiple Access Open Access

    Satoshi DENNO  Taichi YAMAGAMI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/08
      Vol:
    E106-B No:10
      Page(s):
    1004-1014

    This paper proposes low complexity resource allocation in frequency domain non-orthogonal multiple access where many devices access with a base station. The number of the devices is assumed to be more than that of the resource for network capacity enhancement, which is demanded in massive machine type communications (mMTC). This paper proposes two types of resource allocation techniques, all of which are based on the MIN-MAX approach. One of them seeks for nicer resource allocation with only channel gains. The other technique applies the message passing algorithm (MPA) for better resource allocation. The proposed resource allocation techniques are evaluated by computer simulation in frequency domain non-orthogonal multiple access. The proposed technique with the MPA achieves the best bit error rate (BER) performance in the proposed techniques. However, the computational complexity of the proposed techniques with channel gains is much smaller than that of the proposed technique with the MPA, whereas the BER performance of the proposed techniques with channel gains is only about 0.1dB inferior to that with the MPA in the multiple access with the overloading ratio of 1.5 at the BER of 10-4. They attain the gain of about 10dB at the BER of 10-4 in the multiple access with the overloading ration of 2.0. Their complexity is 10-16 as small as the conventional technique.

  • Asynchronous Periodic Interference Signals Cancellation in Frequency Domain

    Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1087-1096

    This paper proposes a novel interference cancellation technique that prevents radio receivers from degrading due to periodic interference signals caused by electromagnetic waves emitted from high power circuits. The proposed technique cancels periodic interference signals in the frequency domain, even if the periodic interference signals drift in the time domain. We propose a drift estimation based on a super resolution technique such as ESPRIT. Moreover, we propose a sequential drift estimation to enhance the drift estimation performance. The proposed technique employs a linear filter based on the minimum mean square error criterion with assistance of the estimated drifts for the interference cancellation. The performance of the proposed technique is confirmed by computer simulation. The proposed technique achieves a gain of more than 40dB at the higher frequency part in the band. The proposed canceler achieves such superior performance, if the parameter sets are carefully selected. The proposed sequential drift estimation relaxes the parameter constraints, and enables the proposed cancellation to achieve the performance upper bound.

  • Complex Frequency Domain Analysis of Memristor Based on Volterra Series Open Access

    Qinghua WANG  Shiying JIA  

     
    PAPER-Circuit Theory

      Pubricized:
    2021/12/17
      Vol:
    E105-A No:6
      Page(s):
    923-929

    At present, the application of different types of memristors in electronics is being deeply studied. Given the nonlinearity characterizing memristors, a circuit with memristors cannot be treated by classical circuit analysis. In this paper, memristor is equivalent to a nonlinear dynamic system composed of linear dynamic system and nonlinear static system by Volterra series. The nonlinear transfer function of memristor is derived. In the complex frequency domain, the n-order complex frequency response of memristor is established by multiple Laplace transform, and the response of MLC parallel circuit is taken as an example to verify. Theoretical analysis shows that the complex frequency domain analysis method of memristor transforms the problem of solving nonlinear circuit in time domain into n times complex frequency domain analysis of linear circuit, which provides an idea for nonlinear dynamic system analysis.

  • Performance of Circular 32QAM/64QAM Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDM

    Chihiro MORI  Miyu NAKABAYASHI  Mamoru SAWAHASHI  Teruo KAWAMURA  Nobuhiko MIKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1054-1066

    This paper presents the average block error rate (BLER) performance of circular 32QAM and 64QAM schemes employing a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiplexing (OFDM) in multipath Rayleigh fading channels. The circular QAM scheme has an advantageous feature in that the fluctuation in the amplitude component is smaller than that for the cross or rectangular QAM scheme. Hence, focusing on the actual received signal-to-noise power ratio (SNR) taking into account a realistic peak-to-average power ratio (PAPR) measure called the cubic metric (CM), we compare the average BLER of the circular 32QAM and 64QAM schemes with those of cross 32QAM and rectangular 64QAM schemes, respectively. We investigate the theoretical throughput of various circular 32QAM and 64QAM schemes based on mutual information from the viewpoint of the minimum Euclidean distance. Link-level simulation results show that the circular 32QAM and 64QAM schemes with independent bit mapping for the phase and amplitude modulations achieves a lower required average received SNR considering the CM than that with the minimum Euclidean distance but with composite mapping of the phase and amplitude modulations. Through extensive link-level simulations, we show the potential benefit of the circular 32QAM and 64QAM schemes in terms of reducing the required average received SNR considering the CM that satisfies the target average BLER compared to the cross 32QAM or rectangular 64QAM scheme.

  • Physical Cell ID Detection Probabilities Using Frequency Domain PVS Transmit Diversity for NB-IoT Radio Interface

    Aya SHIMURA  Mamoru SAWAHASHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1477-1489

    This paper proposes frequency domain precoding vector switching (PVS) transmit diversity for synchronization signals to achieve fast physical cell identity (PCID) detection for the narrowband (NB)-Internet-of-Things (IoT) radio interface. More specifically, we propose localized and distributed frequency domain PVS transmit diversity schemes for the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS), and NPSS and NSSS detection methods including a frequency offset estimation method suitable for frequency domain PVS transmit diversity at the receiver in a set of user equipment (UE). We conduct link-level simulations to compare the detection probabilities of NPSS and NSSS, i.e., PCID using the proposed frequency domain PVS transmit diversity schemes, to those using the conventional time domain PVS transmit diversity scheme. The results show that both the distributed and localized frequency domain PVS transmit diversity schemes achieve a PCID detection probability almost identical to that of the time domain PVS transmit diversity scheme when the effect of the frequency offset due to the frequency error of the UE temperature compensated crystal oscillator (TCXO) is not considered. We also show that for a maximum frequency offset of less than approximately 8 kHz, localized PVS transmit diversity achieves almost the same PCID detection probability. It also achieves a higher PCID detection probability than one-antenna transmission although it is degraded compared to the time domain PVS transmit diversity when the maximum frequency offset is greater than approximately 10 kHz.

  • On Approximated LLR for Single Carrier Millimeter-Wave Transmissions in the Presence of Phase Noise Open Access

    Makoto NISHIKORI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1086-1093

    This paper proposes approximated log likelihood ratios (LLRs) for single carrier millimeter-wave (mmW) transmission systems in the presence of phase noise. In mmW systems, phase noise on carrier wave signals in very high frequency bands causes severe performance degradation. In order to mitigate the impairments of phase noise, forward error correction (FEC) techniques, such as low density parity check (LDPC) code, are effective. However, if the probabilistic model does not capture the exact behavior of the random process present in the received signal, FEC performance is severely degraded, especially in higher order modulation or high coding rate cases. To address this issue, we carefully examine the probabilistic model of minimum mean square error (MMSE) equalizer output including phase noise component. Based on the derived probabilistic model, approximated LLR computation methods with low computational burden are proposed. Computer simulations confirm that the approximated LLR computations on the basis of the derived probabilistic model are capable of improving bit error rate (BER) performance without sacrificing computational simplicity in the presence of phase noise.

  • Decision Feedback Equalizer with Frequency Domain Bidirectional Noise Prediction for MIMO-SCFDE System

    Zedong XIE  Xihong CHEN  Xiaopeng LIU  Lunsheng XUE  Yu ZHAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/09/12
      Vol:
    E100-B No:3
      Page(s):
    433-439

    The impact of intersymbol interference (ISI) on single carrier frequency domain equalization with multiple input multiple output (MIMO-SCFDE) systems is severe. Most existing channel equalization methods fail to solve it completely. In this paper, given the disadvantages of the error propagation and the gap from matched filter bound (MFB), we creatively introduce a decision feedback equalizer with frequency-domain bidirectional noise prediction (DFE-FDBiNP) to tackle intersymbol interference (ISI) in MIMO-SCFDE systems. The equalizer has two-part equalizer, that is the normal mode and the time-reversal mode decision feedback equalization with noise prediction (DFE-NP). Equal-gain combining is used to realize a greatly simplified and low complexity diversity combining. Analysis and simulation results validate the improved performance of the proposed method in quasi-static frequency-selective fading MIMO channel for a typical urban environment.

  • Performance of Open-Loop Transmit Diversity with Intra-Subframe Frequency Hopping and Iterative Decision-Feedback Channel Estimation for DFT-Precoded OFDMA

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1492-1505

    Open-loop (OL) transmit diversity is more subject to the influence of channel estimation error than closed-loop (CL) transmit diversity, although it has the merit of providing better performance in fast Doppler frequency environments because it doesn't require a feedback signal. This paper proposes an OL transmit diversity scheme combined with intra-subframe frequency hopping (FH) and iterative decision-feedback channel estimation (DFCE) in a shared channel for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiple access (OFDMA). We apply intra-subframe FH to OL transmit diversity to mitigate the reduction in the diversity gain under high fading correlation conditions among antennas and iterative DFCE to improve the channel estimation accuracy. Computer simulation results show that the required average received signal-to-noise power ratio at the average block error rate (BLER) of 10-2 of the space-time block code (STBC) with intra-subframe FH is reduced to within approximately 0.8dB compared to codebook-based CL transmit diversity when using iterative DFCE at the maximum Doppler frequency of fD =5.55Hz. Moreover, it is shown that STBC with intra-subframe FH and iterative DFCE achieves much better BLER performance compared to CL transmit diversity when fD is higher than approximately 30Hz since the tracking ability of the latter degrades due to the fast fading variation in its feedback loop.

  • Comparative Study of Open-Loop Transmit Diversity Schemes with Four Antennas in DFT-Precoded OFDMA Using Turbo FDE and Iterative Channel Estimation

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1065-1077

    This paper presents comprehensive comparisons on the block error rate (BLER) performance of rate-one open-loop (OL) transmit diversity schemes with four antennas for discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). One candidate scheme employs a quasi-orthogonal (QO) - space-time block code (STBC) in which four-branch minimum mean-square error (MMSE) combining is achieved at the cost of residual inter-code interference (ICI). Another candidate employs a combination of the STBC and selection transmit diversity called time switched transmit diversity (TSTD) (or frequency switched transmit diversity (FSTD)). We apply a turbo frequency domain equalizer (FDE) associated with iterative decision-feedback channel estimation (DFCE) using soft-symbol estimation to reduce channel estimation (CE) error. The turbo FDE includes an ICI canceller to reduce the influence of the residual ICI for the QO-STBC. Based on link-level simulation results, we show that a combination of the STBC and TSTD (or FSTD) is suitable as a four-antenna OL transmit diversity scheme for DFT-precoded OFDMA using the turbo FDE and iterative DFCE.

  • Effective Frame Selection for Blind Source Separation Based on Frequency Domain Independent Component Analysis

    Yusuke MIZUNO  Kazunobu KONDO  Takanori NISHINO  Norihide KITAOKA  Kazuya TAKEDA  

     
    PAPER-Engineering Acoustics

      Vol:
    E97-A No:3
      Page(s):
    784-791

    Blind source separation is a technique that can separate sound sources without such information as source location, the number of sources, and the utterance content. Multi-channel source separation using many microphones separates signals with high accuracy, even if there are many sources. However, these methods have extremely high computational complexity, which must be reduced. In this paper, we propose a computational complexity reduction method for blind source separation based on frequency domain independent component analysis (FDICA) and examine temporal data that are effective for source separation. A frame with many sound sources is effective for FDICA source separation. We assume that a frame with a low kurtosis has many sound sources and preferentially select such frames. In our proposed method, we used the log power spectrum and the kurtosis of the magnitude distribution of the observed data as selection criteria and conducted source separation experiments using speech signals from twelve speakers. We evaluated the separation performances by the signal-to-interference ratio (SIR) improvement score. From our results, the SIR improvement score was 24.3dB when all the frames were used, and 23.3dB when the 300 frames selected by our criteria were used. These results clarified that our proposed selection criteria based on kurtosis and magnitude is effective. Furthermore, we significantly reduced the computational complexity because it is proportional to the number of selected frames.

  • Investigation on Frequency Diversity Effects of Various Transmission Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDMA

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    30-39

    This paper presents frequency diversity effects of localized transmission, clustered transmission, and intra-subframe frequency hopping (FH) using a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). In the evaluations, we employ the normalized frequency mean square covariance (NFMSV) as a measure of the frequency diversity effect, i.e., randomization level of the frequency domain interleaving associated with turbo coding. Link-level computer simulation results show that frequency diversity is very effective in decreasing the required average received signal-to-noise power ratio (SNR) at the target average block error rate (BLER) using a linear minimum mean-square error (LMMSE) based FDE according to the increase in the entire transmission bandwidth for DFT-precoded OFDMA. Moreover, we show that the NFMSV is an accurate measure of the frequency diversity effect for the 3 transmission schemes for DFT-precoded OFDMA. We also clarify the frequency diversity effects of the 3 transmission schemes from the viewpoint of the required average received SNR satisfying the target average BLER for the various key radio parameters for DFT-precoded OFDMA in frequency-selective Rayleigh fading channels.

  • Adaptive Reversible Data Hiding via Integer-to-Integer Subband Transform and Adaptive Generalized Difference Expansion Method

    Taichi YOSHIDA  Taizo SUZUKI  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E97-A No:1
      Page(s):
    384-392

    We propose an adaptive reversible data hiding method with superior visual quality and capacity in which an adaptive generalized difference expansion (AGDE) method is applied to an integer-to-integer subband transform (I2I-ST). I2I-ST performs the reversible subband transform and the AGDE method is a state-of-the-art method of reversible data hiding. The results of experiments we performed objectively and perceptually show that the proposed method has better visual quality than conventional methods at the same embedding rate due to low variance in the frequency domain.

  • A Drift-Constrained Frequency-Domain Ultra-Low-Delay H.264/SVC to H.264/AVC Transcoder with Medium-Grain Quality Scalability for Videoconferencing

    Lei SUN  Zhenyu LIU  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1253-1263

    Scalable Video Coding (SVC) is an extension of H.264/AVC, aiming to provide the ability to adapt to heterogeneous networks or requirements. It offers great flexibility for bitstream adaptation in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. The straightforward re-encoding method requires great computational cost, and delay-sensitive applications like videoconferencing require much faster transcoding scheme. This paper proposes an ultra-low-delay SVC-to-AVC MGS (Medium-Grain quality Scalability) transcoder for videoconferencing applications. Transcoding is performed in pure frequency domain with partial decoding/encoding in order to achieve significant speed-up. Three fast transcoding methods in frequency domain are proposed for macroblocks with different coding modes in non-KEY pictures. KEY pictures are transcoded by reusing the base layer motion data, and error propagation is constrained between KEY pictures. Simulation results show that proposed transcoder achieves averagely 38.5 times speed-up compared with the re-encoding method, while introducing merely 0.71 dB BDPSNR coding quality loss for videoconferencing sequences as compared with the re-encoding algorithm.

  • Facial Image Super-Resolution Reconstruction Based on Separated Frequency Components

    Hyunduk KIM  Sang-Heon LEE  Myoung-Kyu SOHN  Dong-Ju KIM  Byungmin KIM  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1315-1322

    Super resolution (SR) reconstruction is the process of fusing a sequence of low-resolution images into one high-resolution image. Many researchers have introduced various SR reconstruction methods. However, these traditional methods are limited in the extent to which they allow recovery of high-frequency information. Moreover, due to the self-similarity of face images, most of the facial SR algorithms are machine learning based. In this paper, we introduce a facial SR algorithm that combines learning-based and regularized SR image reconstruction algorithms. Our conception involves two main ideas. First, we employ separated frequency components to reconstruct high-resolution images. In addition, we separate the region of the training face image. These approaches can help to recover high-frequency information. In our experiments, we demonstrate the effectiveness of these ideas.

  • A Novel Low-Complexity Channel Estimation Approach for Single Carrier MIMO Frequency Selective Channels

    Suyue LI  Jian XIONG  Lin GUI  Youyun XU  Baoyu ZHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    233-241

    A simple yet effective time domain correlation channel estimation method is proposed for multiple-input multiple-output (MIMO) systems over dispersive channels. It is known that the inherent co-channel interference (CCI) and inter-symbol interference (ISI) coexist when the signals propagate through MIMO frequency selective channels, which renders the MIMO channel estimation intractable. By elaborately devising the quasi-orthogonal training sequences between multiple antennas which have constant autocorrelation property with different cyclic shifts in the time domain, the interferences induced by ISI and CCI can be simultaneously maintained at a constant and identical value under quasi-static channels. As a consequence, it is advisable to implement the joint ISI and CCI cancelation by solving the constructed linear equation on the basis of the correlation output with optional correlation window. Finally, a general and simplified closed-form expression of the estimated channel impulse response can be acquired without matrix inversion. Additionally, the layered space-time (LST) minimum mean square error (MMSE) (LST-MMSE) frequency domain equalization is briefly described. We also provide some meaningful discussions on the beginning index of the variable correlation window and on the cyclic shift number of m-sequence of other antennas relative to the first antenna. Simulation results demonstrate that the proposed channel estimation approach apparently outperforms the existing schemes with a remarkable reduction in computational complexity.

  • Joint Time-Frequency Diversity for Single-Carrier Block Transmission in Frequency Selective Channels

    Jinsong WU  Steven D. BLOSTEIN  Qingchun CHEN  Pei XIAO  

     
    PAPER-Mobile Information Network

      Vol:
    E95-A No:11
      Page(s):
    1912-1920

    In time-varying frequency selective channels, to obtain high-rate joint time-frequency diversity, linear dispersion coded orthogonal frequency division multiplexing (LDC-OFDM), has recently been proposed. Compared with OFDM systems, single-carrier systems may retain the advantages of lower PAPR and lower sensitivity to carrier frequency offset (CFO) effects, which motivates this paper to investigate how to achieve joint frequency and time diversity for high-rate single-carrier block transmission systems. Two systems are proposed: linear dispersion coded cyclic-prefix single-carrier modulation (LDC-CP-SCM) and linear dispersion coded zero-padded single-carrier modulation (LDC-ZP-SCM) across either multiple CP-SCM or ZP-SCM blocks, respectively. LDC-SCM may use a layered two-stage LDC decoding with lower complexity. This paper analyzes the diversity properties of LDC-CP-SCM, and provides a sufficient condition for LDC-CP-SCM to maximize all available joint frequency and time diversity gain and coding gain. This paper shows that LDC-ZP-SCM may be effectively equipped with low-complexity minimum mean-squared error (MMSE) equalizers. A lower complexity scheme, linear transformation coded SCM (LTC-SCM), is also proposed with good diversity performance.

  • Normalization Method of Gradient Vector in Frequency Domain Steepest Descent Type Adaptive Algorithm

    Yusuke KUWAHARA  Yusuke IWAMATSU  Kensaku FUJII  Mitsuji MUNEYASU  Masakazu MORIMOTO  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:11
      Page(s):
    2041-2045

    In this paper, we propose a normalization method dividing the gradient vector by the sum of the diagonal and two adjoining elements of the matrix expressing the correlation between the components of the discrete Fourier transform (DFT) of the reference signal used for the identification of unknown system. The proposed method can thereby improve the estimation speed of coefficients of adaptive filter.

  • A Multi-Gigabit Parallel Demodulator and Its FPGA Implementation

    Changxing LIN  Jian ZHANG  Beibei SHAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E95-A No:8
      Page(s):
    1412-1415

    This letter presents the architecture of multi-gigabit parallel demodulator suitable for demodulating high order QAM modulated signal and easy to implement on FPGA platform. The parallel architecture is based on frequency domain implementation of matched filter and timing phase correction. Parallel FIFO based delete-keep algorithm is proposed for timing synchronization, while a kind of reduced constellation phase-frequency detector based parallel decision feedback PLL is designed for carrier synchronization. A fully pipelined parallel adaptive blind equalization algorithm is also proposed. Their parallel implementation structures suitable for FPGA platform are investigated. Besides, in the demonstration of 2 Gbps demodulator for 16QAM modulation, the architecture is implemented and validated on a Xilinx V6 FPGA platform with performance loss less than 2 dB.

  • Symbol-Spaced Turbo Frequency Domain Equalization for Precoded Continuous Phase Modulation

    Qing YAN  Qiang LI  Sheng LUO  Shaoqian LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2065-2073

    In this paper, a low-complexity symbol-spaced turbo frequency domain equalization (FDE) algorithm based on Laurent decomposition is proposed for precoded binary continuous phase modulation (CPM) with modulation index h=1/2. At the transmitter, a precoder is utilized to eliminate the inherent memory of the CPM signal. At the receiver, a matched filter based on Laurent decomposition is utilized to make the detection symbol-spaced. As a result, the symbol-spaced iteration can be taken between the equalizer and the decoder directly without a CPM demodulator, and we derive a symbol-spaced soft interference cancellation frequency domain equalization (SSIC-FDE) algorithm for binary CPM with h=1/2. A new data block structure for FDE of partial response CPM is also presented. The computational complexity analysis and simulations show that this approach provides a complexity reduction and an impressive performance improvement over previously proposed turbo FDE algorithm for binary CPM with h=1/2 in multi-path fading channels.

1-20hit(57hit)