The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] functional circuit(2hit)

1-2hit
  • Surface Tunnel Transistors with Multiple Interband Tunnel Junctions

    Toshio BABA  Tetsuya UEMURA  

     
    PAPER-Quantum Devices

      Vol:
    E80-C No:7
      Page(s):
    875-880

    New functional surface tunnel transistors (STTs) with multiple interband-tunnel-junctions in a symmetric source-to-drain structure are proposed to reduce the number of fabrication steps and to increase functionality. These devices have p+/n+ interband tunnel junctions in series between a p+ source and a p+ drain through n+ channels. We successfully fabricated GaAs-based multiple-junction STTs (MJ-STTs) using molecular-beam epitaxy regrowth. This fabrication method eliminates the need for two of the photo-masks in the conventional process for asymmetric planar STTs. In the preliminary experiments using multiple-junction p+/n+ diodes, we found that the peak-voltage increment in negative-differential-resistance (NDR) characteristics due to the reverse-biased tunnel junction in negligible, while the first-peak voltage is roughly proportional to the number of forward-biased tunnel junctions. Moreover, the number of NDR characteristics are completely determined by the number of tunnel junctions. The fabricated STTs with multiple junctions, up to eight junctions, exhibited clear transistor operation with multiple NDR characteristics, which were symmetric with the drain bias. These results indicate that any number of gate-controlled NDR characteristics can be realized in MJ-STTs by using an appropriate number of tunnel junctions in series. In addition, as an example of a functional circuit using MJ-STTs, we implemented a tri-stable circuit with a four-junction STT and a load resistor connected in series. The tri-stable operation was confirmed by applying a combination of a reset pulse and a set pulse for each stable point.

  • Design Study on RF Stage for Miniature PHS Terminal

    Hiroshi TSURUMI  Tadahiko MAEDA  Hiroshi TANIMOTO  Yasuo SUZUKI  Masayuki SAITO  Kunio YOSHIHARA  Kenji ISHIDA  Naotaka UCHITOMI  

     
    PAPER-Active Devices

      Vol:
    E79-C No:5
      Page(s):
    629-635

    A miniature transceiver, including highly integrated MMIC front-end, for 1.9 GHz band personal handy phone system(PHS) has been developed. The terminal, adopting direct conversion transmitter and receiver technology, consists of four high-density RF circuit modules and a digital signal processing LSI with 2.7 V power supply. The four functional modules are a power amplifier, a transmitter,a receiver, and a frequency synthesizer. Each functional module includes one IC chip and passive LCR components connected with solder bumps on module substrate. The experimental miniature PHS handset has been fabricated to verify the design concepts of the miniature transceiver. The total volume of the developed PHS terminal is 60cc, including the 12cc front-end which comprises the four RF functional circuit modules. The air interface connection with the PHS base station simulator has been confirmed.