The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] immunity test(11hit)

1-11hit
  • Characteristics of Discharge Currents Measured through Body-Attached Metal for Modeling ESD from Wearable Electronic Devices

    Takeshi ISHIDA  Fengchao XIAO  Yoshio KAMI  Osamu FUJIWARA  Shuichi NITTA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E99-B No:1
      Page(s):
    186-191

    To investigate electrostatic discharge (ESD) immunity testing for wearable electronic devices, the worst scenario i.e., an ESD event occurs when the body-mounted device approaches a grounded conductor is focused in this paper. Discharge currents caused by air discharges from a charged human through a hand-held metal bar or through a semi-sphere metal attached to the head, arm or waist in lieu of actual wearable devices are measured. As a result, it is found that at a human charge voltage of 1kV, the peak current from the semi-sphere metal is large in order of the attachment of the waist (15.4A), arm (12.8A) and head (12.2A), whereas the peak current (10.0A) from the hand-held metal bar is the smallest. It is also found that the discharge currents through the semi-sphere metals decrease to zero at around 50ns regardless of the attachment positions, although the current through the hand-held metal bar continues to flow at over 90ns. These discharge currents are further characterized by the discharge resistance, the charge storage capacitance and the discharge time constant newly derived from the waveform energy, which are validated from the body impedance measured through the hand-held and body-mounted metals. The above finding suggests that ESD immunity test methods for wearable devices require test specifications entirely different from the conventional ESD immunity testing.

  • An ESD Immunity Test for Battery-Operated Control Circuit Board in Myoelectric Artificial Hand System

    Cheng JI  Daisuke ANZAI  Jianqing WANG  Ikuko MORI  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E98-B No:12
      Page(s):
    2477-2484

    We conduct, in accordance with IEC 61000-4-2, an electrostatic discharge (ESD) test for a small size battery-operated control circuit board in a myoelectric artificial hand system to investigate the influence of the induced noises by indirect ESDs from an ESD generator to a horizontal coupling plane (HCP) and a vertical coupling plane (VCP). A photo-coupler is set between the small size control board and a motor control circuit to suppress noise in the pulse width modulation (PWM) signals. Two types of ESD noise are observed at the output pins of PWM signals. One type is the ESD noise itself (called Type A) and the other one is the ESD noise superimposed over the PWM pulses (Type B). No matter which polarity the charge voltages of the ESD generator have, both types can be observed and the Type A is dominant in the output pulses. Moreover, the ESD interference in the HCP case is found to be stronger than that in the VCP case usually. In the PWM signals observed at the photo-coupler output, on the other hand, Type A noises tend to increase for positive polarity and decrease for negative polarity, while Type B noises tend to increase at -8kV test level in the HCP case. These results suggest that the photo-coupler does not work well for ESD noise suppression. One of the reasons has been demonstrated to be due to the driving capability of the photo-coupler, and other one is due to the presence of a parasitic capacitance between the input and output of the photo-coupler. The parasitic capacitance can yield a capacitive coupling so that high-frequency ESD noises pass through the photo-coupler.

  • Development of an Immunity Test System for Safety of Personal Care Robots

    Masayuki MURAKAMI  Hiroyasu IKEDA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:5
      Page(s):
    1030-1043

    Although many companies have developed robots that assist humans in the activities of daily living, safety requirements and test methods for such robots have not been established. Given the risk associated with a robot malfunctioning in the human living space, from the viewpoints of safety and EMC, it is necessary that the robot does not create a hazardous situation even when exposed to possibly severe electromagnetic disturbances in the operating environment. Thus, in immunity tests for personal care robots, the safety functions should be more rigorously tested than the other functions, and be repeatedly activated in order to ascertain that the safety functions are not lost in the presence of electromagnetic disturbances. In this paper, immunity test procedures for personal care robots are proposed that take into account functional safety requirements. A variety of test apparatuses are presented, which were built for activating the safety functions of robots, and detecting whether they were in a safe state. The practicality of the developed immunity test system is demonstrated using actual robots.

  • Radio Wave Interference Test Method for Wireless Communication System by Opened Parallel Wired Cell

    Masamitsu TOKUDA  Kouhei ICHIKAWA  Yasuo HONMA  Masayuki KITORA  

     
    PAPER-Communications

      Vol:
    E88-B No:8
      Page(s):
    3242-3248

    We have studied on the interference test method from IEEE802.11b to IEEE802.11g as an interference source with wide band spectrum by using the opened PW cell, and it is clear that the throughput of IEEE802.11g for only IEEE802.11b Ch.4 signal wave as the interference wave, whose frequency spectrum is almost not overlapping with IEEE802.11g, is almost not interfered by IEEE802.11b, but the throughputs for all other channels from Ch.5 to Ch.8 as the interference wave are interfered and decrease to below 2 Mbps. By comparing with conventional radiated RF electromagnetic field immunity test specified by IEC 61000-4-3, it is clear that the conventional immunity test cannot simulate the interference phenomena from IEEE802.11b to IEEE802.11g. Next, we tried to perform the interference test of the Bluetooth against the wireless LAN IEEE 802.11b as a disturbance source. As a result, it is revealed that the throughput of Bluetooth decreases according to increasing the interference wave level, and communication between EUT (slave) and the master of Bluetooth is interrupted for the interference wave corresponding to Ch.7 (244210 MHz). However, in the conventional immunity test specified by IEC 61000-4-3, the throughput of the Bluetooth does not affect for the all disturbance waves corresponding to the center frequency of bandwidth on the cannel of IEEE802.11b. Therefore, it is needed for the wireless LAN and the Bluetooth to develop new radiated immunity test method, which has the disturbance wave with wide bandwidth.

  • Evaluation of Electric-Field Uniformity in a Reverberation Chamber for Radiated Immunity Testing

    Katsushige HARIMA  Yukio YAMANAKA  

     
    LETTER

      Vol:
    E84-B No:9
      Page(s):
    2618-2621

    In using a reverberation chamber for radiated immunity testing, it is important to determine the number of discrete steps through which the stirrer rotates and the number of probe locations for a given test volume in the chamber. This is because they affect the uniformity and calibration of the field in the test volume. We experimentally evaluated the effect of the numbers of stirrers and their steps on the field uniformity, and the effect of the number of probe locations on field calibration.

  • TEM-Mode E-Field Uniformity in a GTEM Cell

    Shinobu ISHIGAMI  Katsushige HARIMA  Yukio YAMANAKA  

     
    PAPER-EMC

      Vol:
    E84-B No:9
      Page(s):
    2610-2617

    TEM-mode electric field uniformity on the transverse plane that was perpendicular to a floor conductor of a GTEM (gigahertz transverse electromagnetic) cell, and the usable test volume in the cell, were evaluated both theoretically and experimentally at frequencies of up to 1 GHz. Electric fields in the GTEM cell were calculated by using the FD-TD (finite-difference time-domain) method. The fields were measured by using an optical E-field (electric field) sensor in order to confirm the calculation result. CISPR/A (CISPR: Comite International Special des Perturbations Radioelectriques) and IEC (International Electrotechnical Commission) SC77B proposed in their committee draft that the usable test volume was 0.6W 0.33h, where W and h were a width of the septum (inner conductor of the cell) and a distance between the septum and the floor conductor of the cell, respectively. We found that the usable test volume, i. e. the maximum width and height of an EUT, by the committee draft are reasonable and applicable for a GTEM cell.

  • Low Frequency Radiated Immunity Test Using Three-Dimensional Helmholtz-Coil Set

    Kimitoshi MURANO  Yoshio KAMI  

     
    PAPER-EMC Measurement and Test

      Vol:
    E83-B No:3
      Page(s):
    467-473

    A radiated immunity test method using fields in a three-dimensional Helmholtz-coil set is described. The incident field to equipment under test (EUT) is generated by an orthogonally structured three sets of Helmholtz coil. Using this structure, the resultant field can be generated with arbitrary amplitude and direction. Therefore, the three dimensional immunity characteristics of an EUT can be cleared. The resultant field is calculated numerically and it is established that the field distribution is uniform inside the three dimensional Helmholtz-coil set. This is also confirmed through comparison with measured results. As an example, the immunity test of a cathode ray tube (CRT) display is made and the immunity map of CRT is obtained without reseting placement of EUT. Such map makes us understand the physical meaning and weak points.

  • A Generation Method of Electromagnetic Fields Rotating at a Low Speed for the Immunity Test

    Kimitoshi MURANO  Yoshio KAMI  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E82-B No:3
      Page(s):
    567-569

    A novel method for the radiated immunity test is proposed. The method is to generate controlled electromagnetic fields applying in arbitrary directions to an under test. The fields rotate at a low speed controlled electrically so that the immunity characteristics may be known in more detail. The primal characteristics of the fields generated by a trial benchtop setup are investigated.

  • Proposed Changes to Radiated RF-Field Immunity Test Method to Better Measure Acoustic Noise in Telephones

    Masamitsu TOKUDA  Ryoichi OKAYASU  Yoshiharu AKIYAMA  Kusuo TAKAGI  Fujio AMEMIYA  

     
    PAPER

      Vol:
    E79-B No:4
      Page(s):
    528-533

    Based on the test method proposed by Sub-Committee G of the International Special Committee on Radio Interference, most telephone receivers in Japan have insufficient immunity to acoustic noise caused by radio-frequency fields. This is because the modulation depth of the RF signal used is too high to accurately simulate the audio-frequency components of TV video signals. Reducing the modulation depth from 80% to 5% produces a more realistic simulation.

  • Composite Noise Generator (CNG) as a Noise Simulator and Its Application to Noise Immunity Test of Digital Systems and TV Picture

    Tasuku TAKAGI  

     
    INVITED PAPER

      Vol:
    E78-B No:2
      Page(s):
    127-133

    A composite noise generator (CNG) is proposed for simulating the actual non-Gaussian noise and its applications are mentioned. Basing upon the actual measured result (APD) of induced noise from electric contact discharge arc, the APD is approximated by partial linearlization and shown that it can be simulated by a combination of plural Gaussian noise sources. Applying the CNG, quasi-peak (Q-P) detector is investigated and shown that the Q-P detector response is different for non-Gaussian noise when its time domain parameter is different even if its original APD is the same. For digital transmission error due to non-Gaussian noise, and for TV picture stained by the non-Gaussian noise, the CNG is applied to evaluate their performances and quality. The results obtained show that the CNG can be used as a standard non-Gaussian generator for several immunity tests for information equipments.

  • Anechoic Chambers for EMI Test

    Yasutaka SHIMIZU  

     
    INVITED PAPER

      Vol:
    E75-B No:3
      Page(s):
    101-106

    Anechoic chambers have been effectively used for microwave propagation, electromagnetic interference (EMI) and immunity testing. The electromagnetic compatibility (EMC) problem has recently become serious and many of these chambers have been constructed. The results of a questionnaire survey sent to anechoic chamber manufacturers are described that a total of 450 anechoic chambers have been constructed in Japan since 1964. Twenty years ago the purpose of the chambers was microwave propagation research, but more than 50 each year have recently being built for EMC/EMI and immunity testing. Their size has gradually been reduced by the use of absorbing materials such as ferrite with dielectric materials. The lowest frequency of most chambers is 30MHz for the 3 m method of site attenuation.