The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] innovation(15hit)

1-15hit
  • Chaos and Synchronization - Potential Ingredients of Innovation in Analog Circuit Design? Open Access

    Ludovico MINATI  

     
    INVITED PAPER

      Pubricized:
    2024/03/11
      Vol:
    E107-C No:10
      Page(s):
    376-391

    Recent years have seen a general resurgence of interest in analog signal processing and computing architectures. In addition, extensive theoretical and experimental literature on chaos and analog chaotic oscillators exists. One peculiarity of these circuits is the ability to generate, despite their structural simplicity, complex spatiotemporal patterns when several of them are brought towards synchronization via coupling mechanisms. While by no means a systematic survey, this paper provides a personal perspective on this area. After briefly covering design aspects and the synchronization phenomena that can arise, a selection of results exemplifying potential applications is presented, including in robot control, distributed sensing, reservoir computing, and data augmentation. Despite their interesting properties, the industrial applications of these circuits remain largely to be realized, seemingly due to a variety of technical and organizational factors including a paucity of design and optimization techniques. Some reflections are given regarding this situation, the potential relevance to discontinuous innovation in analog circuit design of chaotic oscillators taken both individually and as synchronized networks, and the factors holding back the transition to higher levels of technology readiness.

  • A Design Methodology Based on the Comprehensive Framework for Pedestrian Navigation Systems

    Tetsuya MANABE  Aya KOJIMA  

     
    PAPER-Intelligent Transport System

      Vol:
    E103-A No:9
      Page(s):
    1111-1119

    This paper describes designing a new pedestrian navigation system using a comprehensive framework called the pedestrian navigation concept reference model (PNCRM). We implement this system as a publicly-available smartphone application and evaluate its positioning performance near Omiya station's western entrance. We also evaluate users' subjective impressions of the system using a questionnaire. In both cases, promising results are obtained, showing that the PNCRM can be used as a tool for designing pedestrian navigation systems, allowing such systems to be created systematically.

  • Signal Reconstruction Algorithm of Finite Rate of Innovation with Matrix Pencil and Principal Component Analysis

    Yujie SHI  Li ZENG  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:3
      Page(s):
    761-768

    In this paper, we study the problem of noise with regard to the perfect reconstruction of non-bandlimited signals, the class of signals having a finite number of degrees of freedom per unit time. The finite rate of innovation (FRI) method provides a means of recovering a non-bandlimited signal through using of appropriate kernels. In the presence of noise, however, the reconstruction function of this scheme may become ill-conditioned. Further, the reduced sampling rates afforded by this scheme can be accompanied by increased error sensitivity. In this paper, to obtain improved noise robustness, we propose the matrix pencil (MP) method for sample signal reconstruction, which is based on principal component analysis (PCA). Through the selection of an adaptive eigenvalue, a non-bandlimited signal can be perfectly reconstructed via a stable solution of the Yule-Walker equation. The proposed method can obtain a high signal-to-noise-ratio (SNR) for the reconstruction results. Herein, the method is applied to certain non-bandlimited signals, such as a stream of Diracs and nonuniform splines. The simulation results demonstrate that the MP and PCA are more effective than the FRI method in suppressing noise. The FRI method can be used in many applications, including those related to bioimaging, radar, and ultrasound imaging.

  • A Design Methodology for Positioning Sub-Platform on Smartphone Based LBS

    Tetsuya MANABE  Takaaki HASEGAWA  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    297-309

    This paper presents a design methodology for positioning sub-platform from the viewpoint of positioning for smartphone-based location-based services (LBS). To achieve this, we analyze a mechanism of positioning error generation including principles of positioning sub-systems and structure of smartphones. Specifically, we carry out the experiments of smartphone positioning performance evaluation by the smartphone basic API (Application Programming Interface) and by the wireless LAN in various environments. Then, we describe the importance of considering three layers as follows: 1) the lower layer that caused by positioning sub-systems, e.g., GPS, wireless LAN, mobile base stations, and so on; 2) the middle layer that caused by functions provided from the platform such as Android and iOS; 3) the upper layer that caused by operation algorithm of applications on the platform.

  • Sampling Signals with Finite Rate of Innovation and Recovery by Maximum Likelihood Estimation

    Akira HIRABAYASHI  Yosuke HIRONAGA  Laurent CONDAT  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1972-1979

    We propose a maximum likelihood estimation approach for the recovery of continuously-defined sparse signals from noisy measurements, in particular periodic sequences of Diracs, derivatives of Diracs and piecewise polynomials. The conventional approach for this problem is based on least-squares (a.k.a. annihilating filter method) and Cadzow denoising. It requires more measurements than the number of unknown parameters and mistakenly splits the derivatives of Diracs into several Diracs at different positions. Moreover, Cadzow denoising does not guarantee any optimality. The proposed approach based on maximum likelihood estimation solves all of these problems. Since the corresponding log-likelihood function is non-convex, we exploit the stochastic method called particle swarm optimization (PSO) to find the global solution. Simulation results confirm the effectiveness of the proposed approach, for a reasonable computational cost.

  • Nonlinear Least-Squares Time-Difference Estimation from Sub-Nyquist-Rate Samples

    Koji HARADA  Hideaki SAKAI  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:7
      Page(s):
    1117-1124

    In this paper, time-difference estimation of filtered random signals passed through multipath channels is discussed. First, we reformulate the approach based on innovation-rate sampling (IRS) to fit our random signal model, then use the IRS results to drive the nonlinear least-squares (NLS) minimization algorithm. This hybrid approach (referred to as the IRS-NLS method) provides consistent estimates even for cases with sub-Nyquist sampling assuming the use of compactly-supported sampling kernels that satisfies the recently-developed nonaliasing condition in the frequency domain. Numerical simulations show that the proposed NLS-IRS method can improve performance over the straight-forward IRS method, and provides approximately the same performance as the NLS method with reduced sampling rate, even for closely-spaced time delays. This enables, given a fixed observation time, significant reduction in the required number of samples, while maintaining the same level of estimation performance.

  • Sampling and Reconstruction of Periodic Piecewise Polynomials Using Sinc Kernel

    Akira HIRABAYASHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:1
      Page(s):
    322-329

    We address a problem of sampling and reconstructing periodic piecewise polynomials based on the theory for signals with a finite rate of innovation (FRI signals) from samples acquired by a sinc kernel. This problem was discussed in a previous paper. There was, however, an error in a condition about the sinc kernel. Further, even though the signal is represented by parameters, these explicit values are not obtained. Hence, in this paper, we provide a correct condition for the sinc kernel and show the procedure. The point is that, though a periodic piecewise polynomial of degree R is defined as a signal mapped to a periodic stream of differentiated Diracs by R + 1 time differentiation, the mapping is not one-to-one. Therefore, to recover the stream is not sufficient to reconstruct the original signal. To solve this problem, we use the average of the target signal, which is available because of the sinc sampling. Simulation results show the correctness of our reconstruction procedure. We also show a sampling theorem for FRI signals with derivatives of a generic known function.

  • Diffusion of Electric Vehicles and Novel Social Infrastructure from the Viewpoint of Systems Innovation Theory

    Takaaki HASEGAWA  

     
    INVITED PAPER

      Vol:
    E93-A No:4
      Page(s):
    672-678

    This paper describes diffusion of electric vehicles and novel social infrastructure from the viewpoint of systems innovation theory considering both human society aspects and elemental technological aspects. Firstly, fundamentals of the systems innovation theory and the platform theory are mentioned. Secondly, discussion on mobility from the viewpoint of the human-society layer and discussion of electrical vehicles from the viewpoint of the elemental techniques are carried out. Thirdly, based on those, R & D, measures are argued such as establishment of the ubiquitous noncontact feeding and authentication payment system is important. Finally, it is also insisted that after the establishment of this system the super smart grid with temporal and spatial control including demand itself with the low social cost will be expected.

  • Least-Squares Linear Smoothers from Randomly Delayed Observations with Correlation in the Delay

    Seiichi NAKAMORI  Aurora HERMOSO-CARAZO  Josefa LINARES-PEREZ  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:2
      Page(s):
    486-493

    This paper discusses the least-squares linear filtering and smoothing (fixed-point and fixed-interval) problems of discrete-time signals from observations, perturbed by additive white noise, which can be randomly delayed by one sampling time. It is assumed that the Bernoulli random variables characterizing delay measurements are correlated in consecutive time instants. The marginal distribution of each of these variables, specified by the probability of a delay in the measurement, as well as their correlation function, are known. Using an innovation approach, the filtering, fixed-point and fixed-interval smoothing recursive algorithms are obtained without requiring the state-space model generating the signal; they use only the covariance functions of the signal and the noise, the delay probabilities and the correlation function of the Bernoulli variables. The algorithms are applied to a particular transmission model with stand-by sensors for the immediate replacement of a failed unit.

  • Fixed-Interval Smoothing from Uncertain Observations with White Plus Coloured Noises Using Covariance Information

    Seiichi NAKAMORI  Raquel CABALLERO-AGUILA  Aurora HERMOSO-CARAZO  Josefa LINARES-PEREZ  

     
    PAPER-Digital Signal Processing

      Vol:
    E87-A No:5
      Page(s):
    1209-1218

    This paper presents recursive algorithms for the least mean-squared error linear filtering and fixed-interval smoothing estimators, from uncertain observations for the case of white and white plus coloured observation noises. The estimators are obtained by an innovation approach and do not use the state-space model, but only covariance information about the signal and the observation noises, as well as the probability that the signal exists in the observed values. Therefore the algorithms are applicable not only to signal processes that can be estimated by the conventional formulation using the state-space model but also to those for which a realization of the state-space model is not available. It is assumed that both the signal and the coloured noise autocovariance functions are expressed in a semi-degenerate kernel form. Since the semi-degenerate kernel is suitable for expressing autocovariance functions of non-stationary or stationary signal processes, the proposed estimators provide estimates of general signal processes.

  • Estimation Algorithm from Delayed Measurements with Correlation between Signal and Noise Using Covariance Information

    Seiichi NAKAMORI  Raquel CABALLERO-AGUILA  Aurora HERMOSO-CARAZO  Josefa LINARES-PEREZ  

     
    PAPER-Systems and Control

      Vol:
    E87-A No:5
      Page(s):
    1219-1225

    This paper considers the least-squares linear estimation problem of signals from randomly delayed observations when the additive white noise is correlated with the signal. The delay values are treated as unknown variables, modelled by a binary white noise with values zero or one; these values indicate that the measurements arrive in time or they are delayed by one sampling time. A recursive one-stage prediction and filtering algorithm is obtained by an innovation approach and do not use the state-space model of the signal. It is assumed that both, the autocovariance functions of the signal and the crosscovariance function between the signal and the observation noise are expressed in a semi-degenerate kernel form; using this information and the delay probabilities, the estimators are recursively obtained.

  • A Map Matching Method with the Innovation of the Kalman Filtering

    Takashi JO  Miki HASEYAMA  Hideo KITAJIMA  

     
    LETTER

      Vol:
    E79-A No:11
      Page(s):
    1853-1855

    This letter proposes a map-matching method for automotive navigation systems. The proposed method utilizes the innovation of the Kalman filter algorithm and can achieve more accurate positioning than the correlation method which is generally used for the navigation systems. In this letter, the performance of the proposed algorithm is verified by some simulations.

  • Estimation of Signal Using Covariance Information Given Uncertain Observations in Continuous-Time Systems

    Seiichi NAKAMORI  

     
    PAPER

      Vol:
    E79-A No:6
      Page(s):
    736-745

    This paper designs recursive least-squares fixed-point smoother and filter, which use the observed value, the probability that the signal exists, and the covariance information relevant to the signal and observation noises, on the estimation problem associated with the uncertain observations in linear continuous-time systems.

  • Innovation Models in a Stochastic System Represented by an Input-Output Model

    Kuniharu KISHIDA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1337-1344

    A stochastic system represented by an input-output model can be described by mainly two different types of state space representation. Corresponding to state space representations innovation models are examined. The relationship between both representations is made clear systematically. An easy transformation between them is presented. Zeros of innovation models are the same as those of an ARMA model which is stochastically equivalent to innovation models, and related to stable eigenvalues of generalized eigenvalue problem of matrix Riccati equation.

  • Pitch Synchronous Innovation CELP (PSI-CELP)

    Takehiro MORIYA  Satoshi MIKI  Kazunori MANO  Hitoshi OHMURO  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1177-1180

    A speech coding scheme at 3.6 kbit/s has been proposed. The scheme is based on CELP (Code Excited Linear Prediction) with pitch synchronous innovation, which means even random codevectors as well as adaptive codevectors have pitch periodicity. The quality is comparable to 6.7 kbit/s VSELP coder for the Japanese cellular radio standard.