The search functionality is under construction.

Keyword Search Result

[Keyword] intergrated electronics(3hit)

1-3hit
  • An Adder-Free Method for a Small Size π/4 Shift QPSK Signal Generator

    Akira YASUDA  Hiroshi TANIMOTO  Chikau TAKAHASHI  Akira YAMAGUCHI  Masayuki KOIZUMI  

     
    PAPER

      Vol:
    E80-A No:2
      Page(s):
    291-295

    A novel adder-free architecture for realizing a small-size π/4-shift QPSK signal generator IC is presented. In order to realize an adder function, analog current-mode addition is utilized instead of digital adders. Impulse responses of a roll-off filter are stored in a ROM as a Δ-Σ modulated one-bit data stream. This can greatly reduce the die size to 0.8mm 0.8mm while maintaining high modulation accuracy. The test chip was fabricated by using the standard 0.8µm CMOS technology, and the chip achieved 1.8% vector modulation error with a 2.7V power supply.

  • High Speed Sub-Half Micron SATURN Transistor Using Epitaxial Base Technology

    Hirokazu FUJIMAKI  Kenichi SUZUKI  Yoshio UMEMURA  Koji AKAHANE  

     
    PAPER-Device Technology

      Vol:
    E76-C No:4
      Page(s):
    577-581

    Selective epitaxial growth technology has been extended to the base formation of a transistor on the basis of the SATURN (Self-Alignment Technology Utilizing Reserved Nitride) process, a high-speed bipolar LSI processing technology. The formation of a self-aligned base contact, coupled with SIC (Selective Ion-implanted Collector) fabricated by lowenergy ion implantation, has not only narrowed the transistor active regions but has drastically reduced the base width. A final base width of 800 and a maximum cut-off frequency of 31 GHz were achieved.

  • Modeling Three Dimensional Effects in CMOS Latch-up

    Abhijit BANDYOPADHYAY  A. B. BHATTACHARYYA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E75-C No:8
      Page(s):
    943-952

    In this paper the three dimensional (3-D) effect on CMOS latch-up is modeled using a graphical technique based on the fundamental principle of "charge neutrality or its current continuity equivalent" in the base region of parasitic transistors involved in latch-up. The graphical generation of the complete latch-up I-V characteristic requires as an input the SPICE parameters of the relevant bipolar and MOS transistors, the values of shunt resistances and the reverse current-voltage characteristic of the well-substrate junction. The infiuence of the MOS transistor shunting the parasitic bipolar transistors has received special attention. The nonideal scaling of the parasitic resistances has been observed to be the most crucial parameter determining the 3-D nature of the device. The proposed model is validated with test-structures fabricated in 2 µm bulk CMOS technology at and above room temperature. SAFE space map is constructed with width W as a parameter.