The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] inverted-F(13hit)

1-13hit
  • Improvement of Radiation Efficiency for Platform-Mounted Small Antenna by Evaluation of Characteristic Mode with Metal Casing Using Infinitesimal Dipole

    Takumi NISHIME  Hiroshi HASHIGUCHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas

      Pubricized:
    2021/12/14
      Vol:
    E105-B No:6
      Page(s):
    722-728

    Platform-mounted small antennas increase dielectric loss and conductive loss and decrease the radiation efficiency. This paper proposes a novel antenna design method to improve radiation efficiency for platform-mounted small antennas by characteristic mode analysis. The proposed method uses mapping of modal weighting coefficient (MWC) and infinitesimal dipole and evaluate the metal casing with 100mm × 55mm × 23mm as a platform excited by an inverted-F antenna. The simulation and measurement results show that the radiation efficiency of 5% is improved with the whole system from 2.5% of the single antenna.

  • A Small Printed Inverted-F Antenna for Circular Polarization

    Takafumi FUJIMOTO  Keigo SHIMIZU  

     
    PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    197-204

    In this paper, a printed inverted-F antenna for radiating circularly polarized wave around its resonant frequency is proposed. To get good axial ratio at the frequency band with 10dB-return loss, a rectangular element is loaded at the feeding line perpendicularly. The axial ratio and the frequency giving the minimum axial ratio can be adjusted by the ratio of the length to the width of the whole antenna and by the dimension of the loaded rectangular element. The operational principle for circular polarization is explained using the electric current distributions. Moreover, the approach of the enhancement for the bandwidth is discussed. The simulated and measured bandwidths of the 10dB-return loss with a 3dB-axial ratio are 2.375GHz-2.591GHz (216MHz) and 2.350-2.534GHz (184MHz), respectively. The proposed antenna's dimension is 0.067λ2c (λc is the wavelength at the center frequency). The proposed antenna is compact and planar, and is therefore useful for circular polarization in the ISM band.

  • Investigation on a Multi-Band Inverted-F Antenna Sharing Only One Shorting Strip among Multiple Branch Elements

    Tuan Hung NGUYEN  Takashi OKI  Hiroshi SATO  Yoshio KOYANAGI  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:7
      Page(s):
    1302-1315

    This paper presents the detailed investigations on a simple multi-band method that allows inverted-F antennas (IFAs) to achieve good impedance matching in many different frequency bands. The impressive simplicity of the method arises from its sharing of a shorting strip among multiple branch elements to simultaneously generate independent resonant modes at arbitrary frequencies. Our simulation and measurement results clarify that, by adjusting the number of branch elements and their lengths, it is very easy to control both the total number of resonant modes and the position of each resonant frequency with impedance matching improved concurrently by adjusting properly the distance ds between the feeding and shorting points. The effectiveness of the multi-band method is verified in antenna miniaturization designs, not only in the case of handset antenna, but also in the design upon an infinite ground plane. Antenna performance and operation principles of proposed multi-band models in each case are analyzed and discussed in detail.

  • A Study on Minimization of Requisite Design Volume of Small Antennas Inside Handset Terminals

    Tuan Hung NGUYEN  Hiroshi SATO  Yoshio KOYANAGI  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:11
      Page(s):
    2395-2403

    This study presents a proposal for space-saving design of built-in antennas for handset terminals based on the concept of requisite design antenna volume. By investigating the relation between antenna input characteristic and electric near-field around the antenna element and surrounding components inside the terminal, and then evaluating the requisite design antenna volume, we propose the most effective deployment for both the antenna and surrounding components. The results show that our simple proposal can help reduced, by about 17% and 31.75%, the space that the antenna element actually requires at least for stable operation inside the terminal, in the single-band designs for the cellular 2GHz band (1920-2170MHz) and 800MHz band (830-880MHz), respectively. In the dual-band design, we verify that it can reduce, the antenna space by about 35.18%, and completely cover the two above cellular bands with good antenna performance.

  • Compact Reconfigurable Wideband Inverted-F Antenna for LTE MIMO Mobile Applications

    Xing ZHAO  Jaehoon CHOI  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:9
      Page(s):
    1921-1927

    In this paper, compact reconfigurable wideband Inverted-F Antenna (IFA) elements are proposed for a Long Term Evolution (LTE) mobile terminal. The proposed inverted-F antenna has a very simple planar arrangement. A capacitive coupling feed strip is employed to modify the input impedance matching. A chip inductor is connected in series to the feeding point to realize the wideband property. The whole Multiple-Input Multiple-Output (MIMO) antenna system consists of two similar inverted-F antenna elements. Antenna element #1 has a wideband property with a 6-dB bandwidth from 0.74 to 0.9GHz. To further expand the bandwidth, antenna element #2 has a reconfigurable property through the use of a Positive Intrinsic-Negative (PIN) diode. Antenna element #2 has a 6-dB bandwidth from 0.74 to 0.84GHz when the PIN diode is on and from 0.79 to 0.9GHz when the PIN diode is off. Moreover, the proposed MIMO antenna has a low radiation-pattern-based envelope correlation coefficient (ECC), which is less than 0.15 over LTE bands 4, 5, 13, and 14.

  • Small Multi-Band Antenna with Tuning Function for Body-Centric Wireless Communications

    Chia-Hsien LIN  Zhengyi LI  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER

      Vol:
    E95-B No:10
      Page(s):
    3074-3080

    The research on body-centric wireless communications (BCWCs) is becoming very hot because of numerous applications, especially the application of E-health systems. Therefore, a small multi-band and low-profile planar inverted-F antenna (PIFA) with tuning function is presented for BCWCs in this paper. In order to achieve multi-band operation, there are two branches in the antenna: the longer branch low frequency band (950–956 MHz), and the shorter branch with a varactor diode embedded for high frequency bands. By supplying different DC voltages, the capacitance of the varactor diode varies, so the resonant frequency can be tuned without changing the dimension of the antenna. While the bias is set at 6 V and 14 V, WiMAX and ISM bands can be covered, respectively. From the radiation patterns, at 950 MHz, the proposed antenna is suitable for on-body communications, and in WiMAX and ISM bands, they are suitable for both on-body and off-body communications.

  • Self-Complementary Inverted-FL Antenna Using Electromagnetic Coupling Feed for Mobile Phone

    Nobuyasu TAKEMURA  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:4
      Page(s):
    1329-1337

    In this paper, the author proposes an electromagnetic coupling fed inverted-FL antenna design. The inverted-FL antenna with a self-complementary structure has been reported as a way to achieve a constant impedance of 188 ohms without the need for a matching load, since the axially symmetric self-complementary antenna has constant impedance, even though it has a finite structure. This design has been realized by integrating an inverted-F antenna with a self-complementary structure for achieving a broadband characteristic and an inverted-L element for operation on a frequency lower than the minimum frequency of the antenna. The proposed antenna realizes a broadband characteristic without attaching the matching load and the impedance transformer to match 50 ohms. The impedance transformer necessary for the inverted-FL antenna with a self-complementary structure is removed by using an electromagnetic coupling feed structure. This antenna, which has a volume of 101045 mm3, obtained broadband and multi-band characteristics covering the GSM850/GSM900/DCS/PCS/UMTS2100/UMTS2600 bands and the 2.5 G/3.5 G bands for Mobile-WiMAX in simulation and measurement.

  • Small Wearable Antenna with Folded Ground for Body-Centric Wireless Communications

    Zhengyi LI  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    LETTER-Antennas

      Vol:
    E95-B No:1
      Page(s):
    109-112

    The miniaturization of electronic devices is leading to the creation of body-centric wireless communications, in which wireless devices are attached to human body. However, the human body environment is often uninviting for wireless signals owing to the mutual influence between the human body and wireless devices' antennas, namely wearable antennas. Therefore, wearable antennas need to be carefully designed. In this paper, a small wearable antenna with folded ground at 2.4 GHz is proposed. The folded ground has two effects: one is to improve efficiency and the other is to enhance bandwidth. When the antenna is very close to human body, it has an efficiency of 50.7% and a wide operation bandwidth of 130 MHz.

  • Planar Compact Inverted-F Antenna for Wireless Wide Area Network Operation in the Laptop Computer

    Chuan-Ling HU  Chang-Fa YANG  Shun-Tian LIN  I-Fong CHEN  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:8
      Page(s):
    2397-2400

    A compact antenna capable of generating two wide operating bands to cover the GSM850/900 (824–960 MHz) and GSM1800/1900/UMTS (1710–2170 MHz) systems is presented. The antenna occupies just 81.5(L)7(W)0.5(H) mm3 on the top edge of the supporting metal frame of the display panel, and is therefore easily embedded in the ultra-thin laptop computers as an internal antenna. The antenna is implemented using a ceramic substrate and consists of multi-branch strips. Based on the principle of the inverted-F antenna, our design yields two operating bands covering 816–983 MHz and 1703–2196 MHz can be achieved with good radiation performance for our design. The proposed antenna is thus suitable to be installed in the ultra-thin laptop computers for Wireless Wide Area Network applications.

  • Planar Inverted-E (PIE) Antenna for a Wide Impedance Bandwidth

    Sinhyung JEON  Hyengcheul CHOI  Hyeongdong KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E93-B No:11
      Page(s):
    3173-3175

    A planar inverted-E (PIE) antenna that can achieve a wide impedance bandwidth is proposed. The antenna is realized by inserting a branch capacitance between the feed line and the shorting pin of a conventional planar inverted-F antenna (PIFA). Such a modification significantly enhanced the impedance bandwidth while maintaining the antenna size. The proposed antenna possesses a very wide impedance bandwidth of 1250 MHz (1650-2900 MHz) at a voltage standing wave ratio (VSWR) <3. In addition, good radiation patterns were obtained at the desired frequency bands.

  • Design of Planar Inverted-F Antenna with Wide and Multi Band Characteristic for Mobile Handset

    Hoon PARK  Jaehoon CHOI  

     
    LETTER-Antennas and Propagation

      Vol:
    E89-B No:9
      Page(s):
    2655-2658

    The development of a small and multiband antenna plays an important role in the rapidly growing mobile communication market. This paper presents the design of a novel small and wideband planar inverted F-antenna which simultaneously covers GSM850/GSM900/DCS1900/IMT2000/WLAN/DMB services. The proposed antenna consists of a main patch with a pair of slits and L-shaped patch, occupying a total volume of 15366 mm3. A very wide impedance bandwidth characteristic was achieved by optimizing both the gap distance between the feed line and L-shaped patch, and also the lengths and widths of a pair of slits on the main patch, which is excited by the modified CPW-fed line. The average gains at the frequencies of 850, 2000 and 2600 MHz were -2.51, -1.42 and -1.68 dBi, respectively. The overall shape of the radiation patterns is suitable for mobile communications.

  • Novel Design Method for Antennas for Selection Diversity on Wireless Terminals

    Syuichi SEKINE  Noriaki ODACHI  Osamu SHIBATA  Hiroki SHOKI  Yasuo SUZUKI  

     
    PAPER-Mobile Antennas

      Vol:
    E84-B No:9
      Page(s):
    2451-2459

    This paper presents a novel design method for reducing the complexity of the design procedure for diversity antennas on the hand-held phone. Recently, antenna selection diversity has been widely used for hand-held phones in order to overcome a problem of fading. A monopole antenna and an inverted-F antenna are the typical combination for this purpose. In the case of the conventional design method, the mutual coupling between two antennas are used for improving the diversity performance. However, strong mutual coupling often makes the diversity antenna design difficult and degrades the radiation performance. The proposed design method suppresses this coupling by tuning the terminating impedance on the unselected antenna and improves the diversity performance by modifying the shape of inverted-F antenna. The validity of the proposed method is investigated under the effect of the user's hand and head by FDTD simulation.

  • A Novel Analytical Method for Optimizing the Terminating Impedance of an Inverted-F Antenna for Antenna Selection Diversity on a Hand-Held Phone

    Noriaki ODACHI  Syuichi SEKINE  Hiroki SHOKI  Yasuo SUZUKI  

     
    PAPER-Antenna and Propagation

      Vol:
    E84-B No:1
      Page(s):
    89-94

    Recently, antenna selection diversity has been widely used for hand-held phones to overcome a fading problem. A monopole antenna (MPA) and an inverted-F antenna (IFA) are the typical antennas used for this purpose. However, strong mutual coupling generally appears between these two antennas and often makes the diversity antenna design difficult. In particular, in the case that the MPA is unselected antenna the mutual coupling can be minimized using the open terminating impedance. On the other hand, in the case that the IFA is unselected antenna the terminating impedance, which can minimize the mutual coupling, has not been clarified. This paper presents a novel analytical method for optimizing the terminating impedance of the IFA. The method exploits the Z-matrix, and the final expression of the terminating impedance is expressed by self- and mutual-impedance. The numerical and experimental results confirm that the proposed optimization method is effective for minimizing the mutual coupling.