The search functionality is under construction.

Keyword Search Result

[Keyword] kernel(136hit)

41-60hit(136hit)

  • Protein Fold Classification Using Large Margin Combination of Distance Metrics

    Chendra Hadi SURYANTO  Kazuhiro FUKUI  Hideitsu HINO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/12/14
      Vol:
    E99-D No:3
      Page(s):
    714-723

    Many methods have been proposed for measuring the structural similarity between two protein folds. However, it is difficult to select one best method from them for the classification task, as each method has its own strength and weakness. Intuitively, combining multiple methods is one solution to get the optimal classification results. In this paper, by generalizing the concept of the large margin nearest neighbor (LMNN), a method for combining multiple distance metrics from different types of protein structure comparison methods for protein fold classification task is proposed. While LMNN is limited to Mahalanobis-based distance metric learning from a set of feature vectors of training data, the proposed method learns an optimal combination of metrics from a set of distance metrics by minimizing the distances between intra-class data and enlarging the distances of different classes' data. The main advantage of the proposed method is the capability in finding an optimal weight coefficient for combination of many metrics, possibly including poor metrics, avoiding the difficulties in selecting which metrics to be included for the combination. The effectiveness of the proposed method is demonstrated on classification experiments using two public protein datasets, namely, Ding Dubchak dataset and ENZYMES dataset.

  • Learning a Similarity Constrained Discriminative Kernel Dictionary from Concatenated Low-Rank Features for Action Recognition

    Shijian HUANG  Junyong YE  Tongqing WANG  Li JIANG  Changyuan XING  Yang LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/11/16
      Vol:
    E99-D No:2
      Page(s):
    541-544

    Traditional low-rank feature lose the temporal information among action sequence. To obtain the temporal information, we split an action video into multiple action subsequences and concatenate all the low-rank features of subsequences according to their time order. Then we recognize actions by learning a novel dictionary model from concatenated low-rank features. However, traditional dictionary learning models usually neglect the similarity among the coding coefficients and have bad performance in dealing with non-linearly separable data. To overcome these shortcomings, we present a novel similarity constrained discriminative kernel dictionary learning for action recognition. The effectiveness of the proposed method is verified on three benchmarks, and the experimental results show the promising results of our method for action recognition.

  • Fast Control Method of Software-Managed TLB for Reducing Zero-Copy Communication Overhead

    Toshihiro YAMAUCHI  Masahiro TSURUYA  Hideo TANIGUCHI  

     
    LETTER-Operating System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2187-2191

    Microkernel operating systems (OSes) use zero-copy communication to reduce the overhead of copying transfer data, because the communication between OS servers occurs frequently in the case of microkernel OSes. However, when a memory management unit manages the translation lookaside buffer (TLB) using software, TLB misses tend to increase the overhead of interprocess communication (IPC) between OS servers running on a microkernel OS. Thus, improving the control method of a software-managed TLB is important for microkernel OSes. This paper proposes a fast control method of software-managed TLB that manages page attachment in the area used for IPC by using TLB entries, instead of page tables. Consequently, TLB misses can be avoided in the area, and the performance of IPC improves. Thus, taking the SH-4 processor as an example of a processor having a software-managed TLB, this paper describes the design and the implementation of the proposed method for AnT operating system, and reports the evaluation results of the proposed method.

  • Blind Image Deblurring Using Weighted Sum of Gaussian Kernels for Point Spread Function Estimation

    Hong LIU  BenYong LIU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2015/08/05
      Vol:
    E98-D No:11
      Page(s):
    2026-2029

    Point spread function (PSF) estimation plays a paramount role in image deblurring processing, and traditionally it is solved by parameter estimation of a certain preassumed PSF shape model. In real life, the PSF shape is generally arbitrary and complicated, and thus it is assumed in this manuscript that a PSF may be decomposed as a weighted sum of a certain number of Gaussian kernels, with weight coefficients estimated in an alternating manner, and an l1 norm-based total variation (TVl1) algorithm is adopted to recover the latent image. Experiments show that the proposed method can achieve satisfactory performance on synthetic and realistic blurred images.

  • Ensemble and Multiple Kernel Regressors: Which Is Better?

    Akira TANAKA  Hirofumi TAKEBAYASHI  Ichigaku TAKIGAWA  Hideyuki IMAI  Mineichi KUDO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E98-A No:11
      Page(s):
    2315-2324

    For the last few decades, learning with multiple kernels, represented by the ensemble kernel regressor and the multiple kernel regressor, has attracted much attention in the field of kernel-based machine learning. Although their efficacy was investigated numerically in many works, their theoretical ground is not investigated sufficiently, since we do not have a theoretical framework to evaluate them. In this paper, we introduce a unified framework for evaluating kernel regressors with multiple kernels. On the basis of the framework, we analyze the generalization errors of the ensemble kernel regressor and the multiple kernel regressor, and give a sufficient condition for the ensemble kernel regressor to outperform the multiple kernel regressor in terms of the generalization error in noise-free case. We also show that each kernel regressor can be better than the other without the sufficient condition by giving examples, which supports the importance of the sufficient condition.

  • Radar HRRP Target Recognition Based on the Improved Kernel Distance Fuzzy C-Means Clustering Method

    Kun CHEN  Yuehua LI  Xingjian XU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/06/08
      Vol:
    E98-D No:9
      Page(s):
    1683-1690

    To overcome the target-aspect sensitivity in radar high resolution range profile (HRRP) recognition, a novel method called Improved Kernel Distance Fuzzy C-means Clustering Method (IKDFCM) is proposed in this paper, which introduces kernel function into fuzzy c-means clustering and relaxes the constraint in the membership matrix. The new method finds the underlying geometric structure information hiding in HRRP target and uses it to overcome the HRRP target-aspect sensitivity. The relaxing of constraint in the membership matrix improves anti-noise performance and robustness of the algorithm. Finally, experiments on three kinds of ground HRRP target under different SNRs and four UCI datasets demonstrate the proposed method not only has better recognition accuracy but also more robust than the other three comparison methods.

  • Manifold Kernel Metric Learning for Larger-Scale Image Annotation

    Lihua GUO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/04/03
      Vol:
    E98-D No:7
      Page(s):
    1396-1400

    An appropriate similarity measure between images is one of the key techniques in search-based image annotation models. In order to capture the nonlinear relationships between visual features and image semantics, many kernel distance metric learning(KML) algorithms have been developed. However, when challenged with large-scale image annotation, their metrics can't explicitly represent the similarity between image semantics, and their algorithms suffer from high computation cost. Therefore, they always lose their efficiency. In this paper, we propose a manifold kernel metric learning (M_KML) algorithm. Our M_KML algorithm will simultaneously learn the manifold structure and the image annotation metrics. The main merit of our M_KML algorithm is that the distance metrics are builded on image feature's interior manifold structure, and the dimensionality reduction on manifold structure can handle the high dimensionality challenge faced by KML. Final experiments verify our method's efficiency and effectiveness by comparing it with state-of-the-art image annotation approaches.

  • Fuzzy Multiple Subspace Fitting for Anomaly Detection

    Raissa RELATOR  Tsuyoshi KATO  Takuma TOMARU  Naoya OHTA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:10
      Page(s):
    2730-2738

    Anomaly detection has several practical applications in different areas, including intrusion detection, image processing, and behavior analysis among others. Several approaches have been developed for this task such as detection by classification, nearest neighbor approach, and clustering. This paper proposes alternative clustering algorithms for the task of anomaly detection. By employing a weighted kernel extension of the least squares fitting of linear manifolds, we develop fuzzy clustering algorithms for kernel manifolds. Experimental results show that the proposed algorithms achieve promising performances compared to hard clustering techniques.

  • Unsupervised Dimension Reduction via Least-Squares Quadratic Mutual Information

    Janya SAINUI  Masashi SUGIYAMA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2014/07/22
      Vol:
    E97-D No:10
      Page(s):
    2806-2809

    The goal of dimension reduction is to represent high-dimensional data in a lower-dimensional subspace, while intrinsic properties of the original data are kept as much as possible. An important challenge in unsupervised dimension reduction is the choice of tuning parameters, because no supervised information is available and thus parameter selection tends to be subjective and heuristic. In this paper, we propose an information-theoretic approach to unsupervised dimension reduction that allows objective tuning parameter selection. We employ quadratic mutual information (QMI) as our information measure, which is known to be less sensitive to outliers than ordinary mutual information, and QMI is estimated analytically by a least-squares method in a computationally efficient way. Then, we provide an eigenvector-based efficient implementation for performing unsupervised dimension reduction based on the QMI estimator. The usefulness of the proposed method is demonstrated through experiments.

  • Kernel-Reliability-Based K-Means (KRKM) Clustering Algorithm and Image Processing

    Chunsheng HUA  Juntong QI  Jianda HAN  Haiyuan WU  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:9
      Page(s):
    2423-2433

    In this paper, we introduced a novel Kernel-Reliability-based K-Means (KRKM) clustering algorithm for categorizing an unknown dataset under noisy condition. Compared with the conventional clustering algorithms, the proposed KRKM algorithm will measure both the reliability and the similarity for classifying data into its neighbor clusters by the dynamic kernel functions, where the noisy data will be rejected by being given low reliability. The reliability for classifying data is measured by a dynamic kernel function whose window size will be determined by the triangular relationship from this data to its two nearest clusters. The similarity from a data item to its neighbor clusters is measured by another adaptive kernel function which takes into account not only the similarity from data to clusters but also that between its two nearest clusters. The main contribution of this work lies in introducing the dynamic kernel functions to evaluate both the reliability and similarity for clustering, which makes the proposed algorithm more efficient in dealing with very strong noisy data. Through various experiments, the efficiency and effectiveness of proposed algorithm have been confirmed.

  • A Non-linear GMM KL and GUMI Kernel for SVM Using GMM-UBM Supervector in Home Acoustic Event Classification

    Ngoc Nam BUI  Jin Young KIM  Tan Dat TRINH  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:8
      Page(s):
    1791-1794

    Acoustic Event Classification (AEC) poses difficult technical challenges as a result of the complexity in capturing and processing sound data. Of the various applicable approaches, Support Vector Machine (SVM) with Gaussian Mixture Model (GMM) supervectors has been proven to obtain better solutions for such problems. In this paper, based on the multiple kernel selection model, we introduce two non-linear kernels, which are derived from the linear kernels of GMM Kullback-Leibler divergence (GMM KL) and GMM-UBM mean interval (GUMI). The proposed method improved the AEC model's accuracy from 85.58% to 90.94% within the domain of home AEC.

  • Quasi-Linear Support Vector Machine for Nonlinear Classification

    Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E97-A No:7
      Page(s):
    1587-1594

    This paper proposes a so called quasi-linear support vector machine (SVM), which is an SVM with a composite quasi-linear kernel. In the quasi-linear SVM model, the nonlinear separation hyperplane is approximated by multiple local linear models with interpolation. Instead of building multiple local SVM models separately, the quasi-linear SVM realizes the multi local linear model approach in the kernel level. That is, it is built exactly in the same way as a single SVM model, by composing a quasi-linear kernel. A guided partitioning method is proposed to obtain the local partitions for the composition of quasi-linear kernel function. Experiment results on artificial data and benchmark datasets show that the proposed method is effective and improves classification performances.

  • Mean Polynomial Kernel and Its Application to Vector Sequence Recognition

    Raissa RELATOR  Yoshihiro HIROHASHI  Eisuke ITO  Tsuyoshi KATO  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:7
      Page(s):
    1855-1863

    Classification tasks in computer vision and brain-computer interface research have presented several applications such as biometrics and cognitive training. However, like in any other discipline, determining suitable representation of data has been challenging, and recent approaches have deviated from the familiar form of one vector for each data sample. This paper considers a kernel between vector sets, the mean polynomial kernel, motivated by recent studies where data are approximated by linear subspaces, in particular, methods that were formulated on Grassmann manifolds. This kernel takes a more general approach given that it can also support input data that can be modeled as a vector sequence, and not necessarily requiring it to be a linear subspace. We discuss how the kernel can be associated with the Projection kernel, a Grassmann kernel. Experimental results using face image sequences and physiological signal data show that the mean polynomial kernel surpasses existing subspace-based methods on Grassmann manifolds in terms of predictive performance and efficiency.

  • Multiple Kernel Learning for Quadratically Constrained MAP Classification

    Yoshikazu WASHIZAWA  Tatsuya YOKOTA  Yukihiko YAMASHITA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:5
      Page(s):
    1340-1344

    Most of the recent classification methods require tuning of the hyper-parameters, such as the kernel function parameter and the regularization parameter. Cross-validation or the leave-one-out method is often used for the tuning, however their computational costs are much higher than that of obtaining a classifier. Quadratically constrained maximum a posteriori (QCMAP) classifiers, which are based on the Bayes classification rule, do not have the regularization parameter, and exhibit higher classification accuracy than support vector machine (SVM). In this paper, we propose a multiple kernel learning (MKL) for QCMAP to tune the kernel parameter automatically and improve the classification performance. By introducing MKL, QCMAP has no parameter to be tuned. Experiments show that the proposed classifier has comparable or higher classification performance than conventional MKL classifiers.

  • Computationally Efficient Estimation of Squared-Loss Mutual Information with Multiplicative Kernel Models

    Tomoya SAKAI  Masashi SUGIYAMA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:4
      Page(s):
    968-971

    Squared-loss mutual information (SMI) is a robust measure of the statistical dependence between random variables. The sample-based SMI approximator called least-squares mutual information (LSMI) was demonstrated to be useful in performing various machine learning tasks such as dimension reduction, clustering, and causal inference. The original LSMI approximates the pointwise mutual information by using the kernel model, which is a linear combination of kernel basis functions located on paired data samples. Although LSMI was proved to achieve the optimal approximation accuracy asymptotically, its approximation capability is limited when the sample size is small due to an insufficient number of kernel basis functions. Increasing the number of kernel basis functions can mitigate this weakness, but a naive implementation of this idea significantly increases the computation costs. In this article, we show that the computational complexity of LSMI with the multiplicative kernel model, which locates kernel basis functions on unpaired data samples and thus the number of kernel basis functions is the sample size squared, is the same as that for the plain kernel model. We experimentally demonstrate that LSMI with the multiplicative kernel model is more accurate than that with plain kernel models in small sample cases, with only mild increase in computation time.

  • Alignment Kernels Based on a Generalization of Alignments

    Kilho SHIN  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E97-D No:1
      Page(s):
    1-10

    This paper shows a way to derive positive definite kernels from edit distances. It is well-known that, if a distance d is negative definite, e-λd is positive definite for any λ > 0. This property provides us the opportunity to apply useful techniques of kernel multivariate analysis to the features of data captured by means of the distance. However, the known instances of edit distance are not always negative definite. Even worse, it is usually not easy to examine whether a given instance of edit distance is negative definite. This paper introduces alignment kernels to present an alternative means to derive kernels from edit distance. The most important advantage of the alignment kernel consists in its easy-to-check sufficient condition for the positive definiteness. In fact, when we surveyed edit distances for strings, trees and graphs, all but one are instantly verified to meet the condition and therefore proven to be positive definite.

  • Speaker-Independent Speech Emotion Recognition Based on Two-Layer Multiple Kernel Learning

    Yun JIN  Peng SONG  Wenming ZHENG  Li ZHAO  Minghai XIN  

     
    LETTER-Speech and Hearing

      Vol:
    E96-D No:10
      Page(s):
    2286-2289

    In this paper, a two-layer Multiple Kernel Learning (MKL) scheme for speaker-independent speech emotion recognition is presented. In the first layer, MKL is used for feature selection. The training samples are separated into n groups according to some rules. All groups are used for feature selection to obtain n sparse feature subsets. The intersection and the union of all feature subsets are the result of our feature selection methods. In the second layer, MKL is used again for speech emotion classification with the selected features. In order to evaluate the effectiveness of our proposed two-layer MKL scheme, we compare it with state-of-the-art results. It is shown that our scheme results in large gain in performance. Furthermore, another experiment is carried out to compare our feature selection method with other popular ones. And the result proves the effectiveness of our feature selection method.

  • Statistical Edge Detection in CT Image by Kernel Density Estimation and Mean Square Error Distance

    Xu XU  Yi CUI  Shuxu GUO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E96-D No:5
      Page(s):
    1162-1170

    In this paper, we develop a novel two-sample test statistic for edge detection in CT image. This test statistic involves the non-parametric estimate of the samples' probability density functions (PDF's) based on the kernel density estimator and the calculation of the mean square error (MSE) distance of the estimated PDF's. In order to extract single-pixel-wide edges, a generic detection scheme cooperated with the non-maximum suppression is also proposed. This new method is applied to a variety of noisy images, and the performance is quantitatively evaluated with edge strength images. The experiments show that the proposed method provides a more effective and robust way of detecting edges in CT image compared with other existing methods.

  • ZNP: A New Generation Network Layer Protocol Based on ID/Locator Split Considering Practical Operation

    Sho KANEMARU  Kazuma YONEMURA  Fumio TERAOKA  

     
    PAPER-Network

      Vol:
    E96-B No:3
      Page(s):
    764-777

    To support mobility, multihoming, routing scalability, and security, there are a lot of proposals based on ID/Locator split approach not only for the current Internet but also for the future Internet. However, none of them meet the requirements for practical operation such as (1) support heterogeneous network layer protocols, (2) scalability of ID/Locator mapping system, (3) independence of mapping information management, and (4) avoidance of locator leakage beyond the administrative boundary. This paper proposes a network layer protocol called Z Network Protocol (ZNP) for the future Internet based on the clean slate approach. ZNP supports heterogeneity of network layer protocols by “Internetworking with a Common ID Space”. Its mapping systems meet the requirements (1)–(4) described above. For manipulating the mapping systems, Z Control Message Protocol (ZCMP) is designed. For resolving the link layer (L2) address from the ZNP Locator, Z Neighbor Discovery Protocol (ZNDP) is designed. We implement ZNP and ZNDP in the Linux kernel, ZCMP in the user space and measure the times needed for transmission, reception, forwarding, and locator conversion. The results show the practicability of ZNP as a network layer protocol for the future Internet.

  • Robust Scene Categorization via Scale-Rotation Invariant Generative Model and Kernel Sparse Representation Classification

    Jinjun KUANG  Yi CHAI  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E96-D No:3
      Page(s):
    758-761

    This paper presents a novel scale-rotation invariant generative model (SRIGM) and a kernel sparse representation classification (KSRC) method for scene categorization. Recently the sparse representation classification (SRC) methods have been highly successful in a number of image processing tasks. Despite its popularity, the SRC framework lucks the abilities to handle multi-class data with high inter-class similarity or high intra-class variation. The kernel random coordinate descent (KRCD) algorithm is proposed for 1 minimization in the kernel space under the KSRC framework. It allows the proposed method to obtain satisfactory classification accuracy when inter-class similarity is high. The training samples are partitioned in multiple scales and rotated in different resolutions to create a generative model that is invariant to scale and rotation changes. This model enables the KSRC framework to overcome the high intra-class variation problem for scene categorization. The experimental results show the proposed method obtains more stable performances than other existing state-of-art scene categorization methods.

41-60hit(136hit)