The search functionality is under construction.

Keyword Search Result

[Keyword] kernel(136hit)

81-100hit(136hit)

  • Superfast-Trainable Multi-Class Probabilistic Classifier by Least-Squares Posterior Fitting

    Masashi SUGIYAMA  

     
    PAPER

      Vol:
    E93-D No:10
      Page(s):
    2690-2701

    Kernel logistic regression (KLR) is a powerful and flexible classification algorithm, which possesses an ability to provide the confidence of class prediction. However, its training--typically carried out by (quasi-)Newton methods--is rather time-consuming. In this paper, we propose an alternative probabilistic classification algorithm called Least-Squares Probabilistic Classifier (LSPC). KLR models the class-posterior probability by the log-linear combination of kernel functions and its parameters are learned by (regularized) maximum likelihood. In contrast, LSPC employs the linear combination of kernel functions and its parameters are learned by regularized least-squares fitting of the true class-posterior probability. Thanks to this linear regularized least-squares formulation, the solution of LSPC can be computed analytically just by solving a regularized system of linear equations in a class-wise manner. Thus LSPC is computationally very efficient and numerically stable. Through experiments, we show that the computation time of LSPC is faster than that of KLR by two orders of magnitude, with comparable classification accuracy.

  • Gaussian Kernel-Based Multi-Histogram Equalization

    Suk Tae SEO  In Keun LEE  Hye Cheun JEONG  Soon Hak KWON  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E93-D No:5
      Page(s):
    1313-1316

    Histogram equalization is the most popular method for image enhancement. However it has some drawbacks: i) it causes undesirable artifacts and ii) it can degrade the visual quality. To overcome the drawbacks, in this letter, multi-histogram equalization on smoothed histogram using a Gaussian kernel is proposed. To demonstrate the effectiveness, the method is tested on several images and compared with conventional methods.

  • Kernel Based Image Registration Incorporating with Both Feature and Intensity Matching

    Quan MIAO  Guijin WANG  Xinggang LIN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E93-D No:5
      Page(s):
    1317-1320

    Image sequence registration has attracted increasing attention due to its significance in image processing and computer vision. In this paper, we put forward a new kernel based image registration approach, combining both feature-based and intensity-based methods. The proposed algorithm consists of two steps. The first step utilizes feature points to roughly estimate a motion parameter between successive frames; the second step applies our kernel based idea to align all the frames to the reference frame (typically the first frame). Experimental results using both synthetic and real image sequences demonstrate that our approach can automatically register all the image frames and be robust against illumination change, occlusion and image noise.

  • A Model Optimization Approach to the Automatic Segmentation of Medical Images

    Ahmed AFIFI  Toshiya NAKAGUCHI  Norimichi TSUMURA  Yoichi MIYAKE  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E93-D No:4
      Page(s):
    882-890

    The aim of this work is to develop an efficient medical image segmentation technique by fitting a nonlinear shape model with pre-segmented images. In this technique, the kernel principle component analysis (KPCA) is used to capture the shape variations and to build the nonlinear shape model. The pre-segmentation is carried out by classifying the image pixels according to the high level texture features extracted using the over-complete wavelet packet decomposition. Additionally, the model fitting is completed using the particle swarm optimization technique (PSO) to adapt the model parameters. The proposed technique is fully automated, is talented to deal with complex shape variations, can efficiently optimize the model to fit the new cases, and is robust to noise and occlusion. In this paper, we demonstrate the proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans and the obtained results are very hopeful.

  • A Family-Based Evolutional Approach for Kernel Tree Selection in SVMs

    Ithipan METHASATE  Thanaruk THEERAMUNKONG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E93-D No:4
      Page(s):
    909-921

    Finding a kernel mapping function for support vector machines (SVMs) is a key step towards construction of a high-performanced SVM-based classifier. While some recent methods exploited an evolutional approach to construct a suitable multifunction kernel, most of them searched randomly and diversely. In this paper, the concept of a family of identical-structured kernel trees is proposed to enable exploration of structure space using genetic programming whereas to pursue investigation of parameter space on a certain tree using evolution strategy. To control balance between structure and parameter search towards an optimal kernel, simulated annealing is introduced. By experiments on a number of benchmark datasets in the UCI and text classification collection, the proposed method is shown to be able to find a better optimal solution than other search methods, including grid search and gradient search.

  • RPP: Reference Pattern Based Kernel Prefetching Controller

    Hyo J. LEE  In Hwan DOH  Eunsam KIM  Sam H. NOH  

     
    LETTER-System Programs

      Vol:
    E92-D No:12
      Page(s):
    2512-2515

    Conventional kernel prefetching schemes have focused on taking advantage of sequential access patterns that are easy to detect. However, it is observed that, on random and even sequential references, they may cause performance degradation due to inaccurate pattern prediction and overshooting. To address these problems, we propose a novel approach to work with existing kernel prefetching schemes, called Reference Pattern based kernel Prefetching (RPP). The RPP can reduce negative effects of existing schemes by identifying one more reference pattern, i.e., looping, in addition to random and sequential patterns and delaying starting prefetching until patterns are confirmed to be sequential or looping.

  • An Extended Method of SIRMs Connected Fuzzy Inference Method Using Kernel Method

    Hirosato SEKI  Fuhito MIZUGUCHI  Satoshi WATANABE  Hiroaki ISHII  Masaharu MIZUMOTO  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:10
      Page(s):
    2514-2521

    The single input rule modules connected fuzzy inference method (SIRMs method) by Yubazaki et al. can decrease the number of fuzzy rules drastically in comparison with the conventional fuzzy inference methods. Moreover, Seki et al. have proposed a functional-type SIRMs method which generalizes the consequent part of the SIRMs method to function. However, these SIRMs methods can not be applied to XOR (Exclusive OR). In this paper, we propose a "kernel-type SIRMs method" which uses the kernel trick to the SIRMs method, and show that this method can treat XOR. Further, a learning algorithm of the proposed SIRMs method is derived by using the steepest descent method, and compared with the one of conventional SIRMs method and kernel perceptron by applying to identification of nonlinear functions, medical diagnostic system and discriminant analysis of Iris data.

  • Local Image Descriptors Using Supervised Kernel ICA

    Masaki YAMAZAKI  Sidney FELS  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E92-D No:9
      Page(s):
    1745-1751

    PCA-SIFT is an extension to SIFT which aims to reduce SIFT's high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminative representation for recognition due to its global feature nature and unsupervised algorithm. In addition, linear methods such as PCA and ICA can fail in the case of non-linearity. In this paper, we propose a new discriminative method called Supervised Kernel ICA (SKICA) that uses a non-linear kernel approach combined with Supervised ICA-based local image descriptors. Our approach blends the advantages of supervised learning with nonlinear properties of kernels. Using five different test data sets we show that the SKICA descriptors produce better object recognition performance than other related approaches with the same dimensionality. The SKICA-based representation has local sensitivity, non-linear independence and high class separability providing an effective method for local image descriptors.

  • Adaptive Missing Texture Reconstruction Method Based on Kernel Canonical Correlation Analysis with a New Clustering Scheme

    Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER-Image

      Vol:
    E92-A No:8
      Page(s):
    1950-1960

    In this paper, a method for adaptive reconstruction of missing textures based on kernel canonical correlation analysis (CCA) with a new clustering scheme is presented. The proposed method estimates the correlation between two areas, which respectively correspond to a missing area and its neighboring area, from known parts within the target image and realizes reconstruction of the missing texture. In order to obtain this correlation, the kernel CCA is applied to each cluster containing the same kind of textures, and the optimal result is selected for the target missing area. Specifically, a new approach monitoring errors caused in the above kernel CCA-based reconstruction process enables selection of the optimal result. This approach provides a solution to the problem in traditional methods of not being able to perform adaptive reconstruction of the target textures due to missing intensities. Consequently, all of the missing textures are successfully estimated by the optimal cluster's correlation, which provides accurate reconstruction of the same kinds of textures. In addition, the proposed method can obtain the correlation more accurately than our previous works, and more successful reconstruction performance can be expected. Experimental results show impressive improvement of the proposed reconstruction technique over previously reported reconstruction techniques.

  • Distance between Two Classes: A Novel Kernel Class Separability Criterion

    Jiancheng SUN  Chongxun ZHENG  Xiaohe LI  

     
    LETTER

      Vol:
    E92-D No:7
      Page(s):
    1397-1400

    With a Gaussian kernel function, we find that the distance between two classes (DBTC) can be used as a class separability criterion in feature space since the between-class separation and the within-class data distribution are taken into account impliedly. To test the validity of DBTC, we develop a method of tuning the kernel parameters in support vector machine (SVM) algorithm by maximizing the DBTC in feature space. Experimental results on the real-world data show that the proposed method consistently outperforms corresponding hyperparameters tuning methods.

  • Recent Advances and Trends in Large-Scale Kernel Methods

    Hisashi KASHIMA  Tsuyoshi IDE  Tsuyoshi KATO  Masashi SUGIYAMA  

     
    INVITED PAPER

      Vol:
    E92-D No:7
      Page(s):
    1338-1353

    Kernel methods such as the support vector machine are one of the most successful algorithms in modern machine learning. Their advantage is that linear algorithms are extended to non-linear scenarios in a straightforward way by the use of the kernel trick. However, naive use of kernel methods is computationally expensive since the computational complexity typically scales cubically with respect to the number of training samples. In this article, we review recent advances in the kernel methods, with emphasis on scalability for massive problems.

  • Measuring Particles in Joint Feature-Spatial Space

    Liang SHA  Guijin WANG  Anbang YAO  Xinggang LIN  

     
    LETTER-Vision

      Vol:
    E92-A No:7
      Page(s):
    1737-1742

    Particle filter has attracted increasing attention from researchers of object tracking due to its promising property of handling nonlinear and non-Gaussian systems. In this paper, we mainly explore the problem of precisely estimating observation likelihoods of particles in the joint feature-spatial space. For this purpose, a mixture Gaussian kernel function based similarity is presented to evaluate the discrepancy between the target region and the particle region. Such a similarity can be interpreted as the expectation of the spatial weighted feature distribution over the target region. To adapt outburst of object motion, we also present a method to appropriately adjust state transition model by utilizing the priors of motion speed and object size. In comparison with the standard particle filter tracker, our tracking algorithm shows the better performance on challenging video sequences.

  • Implementation Issues of Second-Order Cone Programming Approaches for Support Vector Machine Learning Problems

    Rameswar DEBNATH  Masakazu MURAMATSU  Haruhisa TAKAHASHI  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E92-A No:4
      Page(s):
    1209-1222

    The core of the support vector machine (SVM) problem is a quadratic programming problem with a linear constraint and bounded variables. This problem can be transformed into the second order cone programming (SOCP) problems. An interior-point-method (IPM) can be designed for the SOCP problems in terms of storage requirements as well as computational complexity if the kernel matrix has low-rank. If the kernel matrix is not a low-rank matrix, it can be approximated by a low-rank positive semi-definite matrix, which in turn will be fed into the optimizer. In this paper we present two SOCP formulations for each SVM classification and regression problem. There are several search direction methods for implementing SOCPs. Our main goal is to find a better search direction for implementing the SOCP formulations of the SVM problems. Two popular search direction methods: HKM and AHO are tested analytically for the SVM problems, and efficiently implemented. The computational costs of each iteration of the HKM and AHO search direction methods are shown to be the same for the SVM problems. Thus, the training time depends on the number of IPM iterations. Our experimental results show that the HKM method converges faster than the AHO method. We also compare our results with the method proposed in Fine and Scheinberg (2001) that also exploits the low-rank of the kernel matrix, the state-of-the-art SVM optimization softwares SVMTorch and SVMlight. The proposed methods are also compared with Joachims 'Linear SVM' method on linear kernel.

  • kP2PADM: An In-Kernel Architecture of P2P Management Gateway

    Ying-Dar LIN  Po-Ching LIN  Meng-Fu TSAI  Tsao-Jiang CHANG  Yuan-Cheng LAI  

     
    PAPER-Computer Systems

      Vol:
    E91-D No:10
      Page(s):
    2398-2405

    Managing increasing traffic from Instant Messengers and P2P applications is becoming more important nowadays. We present an in-kernel architecture of management gateway, namely kP2PADM, built upon open-source packages with several modifications and design techniques. First, the in-kernel design streamlines the data path through the gateway. Second, the dual-queue buffer eliminates head-of-line blocking for multiple connections. Third, a connection cache reduces useless reconnection attempts from the peers. Fourth, a fast-pass mechanism avoids slowing down the TCP transmission. The in-kernel design approximately doubles the throughput of the design in the user space. The internal benchmarks also analyze the impact of each function on performance.

  • Fuzzy c-Means Algorithms for Data with Tolerance Using Kernel Functions

    Yuchi KANZAWA  Yasunori ENDO  Sadaaki MIYAMOTO  

     
    PAPER-Soft Computing

      Vol:
    E91-A No:9
      Page(s):
    2520-2534

    In this paper, two new clustering algorithms based on fuzzy c-means for data with tolerance using kernel functions are proposed. Kernel functions which map the data from the original space into higher dimensional feature space are introduced into the proposed algorithms. Nonlinear boundary of clusters can be easily found by using the kernel functions. First, two clustering algorithms for data with tolerance are introduced. One is based on standard method and the other is on entropy-based one. Second, the tolerance in feature space is discussed taking account into soft margin algorithm in Support Vector Machine. Third, two objective functions in feature space are shown corresponding to two methods, respectively. Fourth, Karush-Kuhn-Tucker conditions of two objective functions are considered, respectively, and these conditions are re-expressed with kernel functions as the representation of an inner product for mapping from the original pattern space into a higher dimensional feature space. Fifth, two iterative algorithms are proposed for the objective functions, respectively. Through some numerical experiments, the proposed algorithms are discussed.

  • Local Subspace Classifier with Transform-Invariance for Image Classification

    Seiji HOTTA  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:6
      Page(s):
    1756-1763

    A family of linear subspace classifiers called local subspace classifier (LSC) outperforms the k-nearest neighbor rule (kNN) and conventional subspace classifiers in handwritten digit classification. However, LSC suffers very high sensitivity to image transformations because it uses projection and the Euclidean distances for classification. In this paper, I present a combination of a local subspace classifier (LSC) and a tangent distance (TD) for improving accuracy of handwritten digit recognition. In this classification rule, we can deal with transform-invariance easily because we are able to use tangent vectors for approximation of transformations. However, we cannot use tangent vectors in other type of images such as color images. Hence, kernel LSC (KLSC) is proposed for incorporating transform-invariance into LSC via kernel mapping. The performance of the proposed methods is verified with the experiments on handwritten digit and color image classification.

  • A Learning Algorithm of Boosting Kernel Discriminant Analysis for Pattern Recognition

    Shinji KITA  Seiichi OZAWA  Satoshi MAEKAWA  Shigeo ABE  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E90-D No:11
      Page(s):
    1853-1863

    In this paper, we present a new method to enhance classification performance of a multiple classifier system by combining a boosting technique called AdaBoost.M2 and Kernel Discriminant Analysis (KDA). To reduce the dependency between classifier outputs and to speed up the learning, each classifier is trained in a different feature space, which is obtained by applying KDA to a small set of hard-to-classify training samples. The training of the system is conducted based on AdaBoost.M2, and the classifiers are implemented by Radial Basis Function networks. To perform KDA at every boosting round in a realistic time scale, a new kernel selection method based on the class separability measure is proposed. Furthermore, a new criterion of the training convergence is also proposed to acquire good classification performance with fewer boosting rounds. To evaluate the proposed method, several experiments are carried out using standard evaluation datasets. The experimental results demonstrate that the proposed method can select an optimal kernel parameter more efficiently than the conventional cross-validation method, and that the training of boosting classifiers is terminated with a fairly small number of rounds to attain good classification accuracy. For multi-class classification problems, the proposed method outperforms both Boosting Linear Discriminant Analysis (BLDA) and Radial-Basis Function Network (RBFN) with regard to the classification accuracy. On the other hand, the performance evaluation for 2-class problems shows that the advantage of the proposed BKDA against BLDA and RBFN depends on the datasets.

  • Kernel Trees for Support Vector Machines

    Ithipan METHASATE  Thanaruk THEERAMUNKONG  

     
    PAPER

      Vol:
    E90-D No:10
      Page(s):
    1550-1556

    The support vector machines (SVMs) are one of the most effective classification techniques in several knowledge discovery and data mining applications. However, a SVM requires the user to set the form of its kernel function and parameters in the function, both of which directly affect to the performance of the classifier. This paper proposes a novel method, named a kernel-tree, the function of which is composed of multiple kernels in the form of a tree structure. The optimal kernel tree structure and its parameters is determined by genetic programming (GP). To perform a fine setting of kernel parameters, the gradient descent method is used. To evaluate the proposed method, benchmark datasets from UCI and dataset of text classification are applied. The result indicates that the method can find a better optimal solution than the grid search and the gradient search.

  • Detecting and Guarding against Kernel Backdoors through Packet Flow Differentials Open Access

    Cheolho LEE  Kiwook SOHN  

     
    PAPER

      Vol:
    E90-B No:10
      Page(s):
    2638-2645

    In this paper, we present a novel technique to detect and defeat kernel backdoors which cannot be identified by conventional security solutions. We focus on the fact that since the packet flows of common network applications go up and down through the whole network subsystem but kernel backdoors utilize only the lower layers of the subsystem, we can detect kernel backdoors by employing two host-based monitoring sensors (one at higher layer and the other at lower layer) and by inspecting the packet flow differentials. We also provide strategies to mitigate false positives and negatives and to defeat kernel backdoors. To evaluate the effectiveness of the proposed technique, we implemented a detection system (KbGuard) and performed experiments in a simulated environment. The evaluation results indicate that our approach can effectively detect and deactivate kernel backdoors with a high detection rate. We also believe that our research can help prevent stealthy threats of kernel backdoors.

  • Linearization of Loudspeaker Systems Using a Subband Parallel Cascade Volterra Filter

    Hideyuki FURUHASHI  Yoshinobu KAJIKAWA  Yasuo NOMURA  

     
    LETTER

      Vol:
    E90-A No:8
      Page(s):
    1616-1619

    In this paper, we propose a low complexity realization method for compensating for nonlinear distortion. Generally, nonlinear distortion is compensated for by a linearization system using a Volterra kernel. However, this method has a problem of requiring a huge computational complexity for the convolution needed between an input signal and the 2nd-order Volterra kernel. The Simplified Volterra Filter (SVF), which removes the lines along the main diagonal of the 2nd-order Volterra kernel, has been previously proposed as a way to reduce the computational complexity while maintaining the compensation performance for the nonlinear distortion. However, this method cannot greatly reduce the computational complexity. Hence, we propose a subband linearization system which consists of a subband parallel cascade realization method for the 2nd-order Volterra kernel and subband linear inverse filter. Experimental results show that this proposed linearization system can produce the same compensation ability as the conventional method while reducing the computational complexity.

81-100hit(136hit)