The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] low leakage(3hit)

1-3hit
  • Analysis and Modeling of Leakage Current for Four-Terminal MOSFET in Off-State and Low Leakage Switches

    Kawori TAKAKUBO  Toru ETO  Hajime TAKAKUBO  

     
    PAPER

      Vol:
    E92-A No:2
      Page(s):
    421-429

    Leakage current for MOSFET in off-state is one of the serious problems in charge-based analog circuits under low power supply. To suppress the leakage current, a method that a slight voltage is applied to source to accomplish reverse bias between source and bulk is proposed. The proposed bias condition, also other bias conditions, is analyzed by injection carrier density in p-n junction and surface carrier concentration in MOS diode in four-terminal MOSFET. Leakage current is modeled by combining the characteristics of p-n junction with MOS diode in MOSFET. The characteristics of MOSFET fabricated with a standard 0.18 µm n-well CMOS technology are measured to investigate the basic principle. Measured leakage current fits to the theoretical leakage current exactly. The proposed slight bias to source terminal in MOSFET is proved most efficient to reduce the leakage current. Based on the proposed source bias condition, MOSFET switches with low leakage current under a single power supply are proposed.

  • Low-Power Low-Leakage FPGA Design Using Zigzag Power Gating, Dual-VTH/VDD and Micro-VDD-Hopping

    Canh Quang TRAN  Hiroshi KAWAGUCHI  Takayasu SAKURAI  

     
    PAPER-Low Power Techniques

      Vol:
    E89-C No:3
      Page(s):
    280-286

    A low-power FPGA design approach is proposed based on a fine-grain VDD control scheme called micro-VDD-hopping. Four configurable logic blocks (CLBs) are grouped into one block where VDD is shared. In the micro-VDD-hopping scheme, VDD in each block is changed between VDDH (high VDD) and VDDL (low VDD) spatially and temporally in order to achieve lower power without performance degraded. A low-power level shifter that has less contention is also proposed for low-swing inter-block signals. The FPGA incorporates the Zigzag power-gating scheme, in which special care has been taken to cope with a sneak leakage-path problem. A test chip was fabricated using a 0.35-µm CMOS technology, together with the conventional fixed-VDD FPGA for comparison. Measurement results show that dynamic power in the proposed scheme can be reduced by 86% when a frequency is half of the maximum one. Simulation using a 90-nm CMOS technology shows that leakage power can be reduced by 97%, when the proposed method is used. The area overhead of the proposed FPGA is 2%.

  • A 4500 MIPS/W, 86 µA Resume-Standby, 11 µA Ultra-Standby Application Processor for 3G Cellular Phones

    Makoto ISHIKAWA  Tatsuya KAMEI  Yuki KONDO  Masanao YAMAOKA  Yasuhisa SHIMAZAKI  Motokazu OZAWA  Saneaki TAMAKI  Mikio FURUYAMA  Tadashi HOSHI  Fumio ARAKAWA  Osamu NISHII  Kenji HIROSE  Shinichi YOSHIOKA  Toshihiro HATTORI  

     
    PAPER-Digital

      Vol:
    E88-C No:4
      Page(s):
    528-535

    We have developed an application processor optimized for 3G cellular phones. It provides high energy efficiency by using various low power techniques. For low active power consumption, we use a hierarchical clock gating technique with a static clock gating controlled by software and a two-level dynamic clock gating controlled by hardware. This technique reduces clock power consumption by 35%. And we also apply a pointer-based pipeline to in the CPU core, which reduces the pipeline latch power by 25%. This processor contains 256 kB of on-chip user RAM (URAM) to reduce the external memory access power. The URAM read buffer (URB) enables high-throughput, low latency access to the URAM while keeping the CPU clock frequency high because the URAM read data is transferred to the URB in 256-bit widths at half the frequency of the CPU. The average miss penalty is 3.5 cycles at the CPU clock frequency, hit rate is 89% and the energy used for URAM reads is 8% less that what it would be for URAM without a URB. These techniques reduce the power consumption of the CPU core, and achieve 4500 MIPS/W at 1.0 V power supply (Dhrystone 2.1). For the low leakage requirements, we use internal power switches, and provides resume-standby (R-standby) and ultra-standby (U-standby) modes. Signals across a power boundary are transmitted through µI/O circuits to prevent invalid signal transmission. In the R-standby mode, the power supply to almost all the CPU core area, except for the URAM is cut off and the URAM is set to a retention mode. In the U-standby mode, the power supply to the URAM is also turned off for less leakage current. The leakage currents in the R-standby and in the U-standby modes are respectively only 98 and 12 µA. For quick recovery from the R-standby mode, the boot address register (BAR) and control register contents needed immediately after wake-up are saved by hardware into backup latches. The other contents are saved by software into URAM. It takes 2.8 ms to fully recover from R-standby.