1-2hit |
Makoto TAKIYAMA Susumu OHTSUKA Tadashi SAKON Masaharu TACHIMORI
The dielectric breakdown strength of thermally grown silicon dioxide films was studied for MOS capacitors fabricated on silicon wafers that were intentionally contaminated with magnesium and zinc. Most of magnesium was detected in the oxide film after oxidation. Zinc, some of which evaporated from the surface of wafers, was detected only in the oxide film. The mechanism of the dielectric degradation is dominated by formation of metal silicates, such as Mg2SiO4 (Forsterite) and Zn2SiO4 (Wilemite). The formation of metal silicates has no influence on the generation lifetime of minority carriers, however, it provides the flat-band voltage shift less than 0.3 eV, and forces to increase the density of deep surface states with the zinc contamination.
Yasuhisa SATO Rinshi SUGINO Masaki OKUNO Toshiro NAKANISHI Takashi ITO
Breakdown fields and the charges to breakdown (QBD) of oxides increased after UV/Cl2 pre-oxidation cleaning. This is due to decreased residual metal contaminants on silicon surfaces in the bottom of the LOCOS region after wet cleaning. Treatment in NH4OH, H2O2 and H2O prior to UV/Cl2 cleaning suppressed increases in surface roughness and kept leakage currents through the oxides after UV/Cl2 cleaning as low as those after wet cleaning alone. The large junction leakage currents--caused by metal contaminants introduced during dry etching--decreased after UV/Cl2 cleaning which removes the contaminated layer.