The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] microwave amplifier(8hit)

1-8hit
  • Analysis of Efficiency-Limiting Factors Resulting from Transistor Current Source on Class-F and Inverse Class-F Power Amplifiers Open Access

    Hiroshi YAMAMOTO  Ken KIKUCHI  Valeria VADALÀ  Gianni BOSI  Antonio RAFFO  Giorgio VANNINI  

     
    INVITED PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    449-456

    This paper describes the efficiency-limiting factors resulting from transistor current source in the case of class-F and inverse class-F (F-1) operations under saturated region. We investigated the influence of knee voltage and gate-voltage clipping behaviors on drain efficiency as limiting factors for the current source. Numerical analysis using a simplified transistor model was carried out. As a result, we have demonstrated that the limiting factor for class-F-1 operation is the gate-diode conduction rather than knee voltage. On the other hand, class-F PA is restricted by the knee voltage effects. Furthermore, nonlinear measurements carried out on a GaN HEMT validate our analytical results.

  • AlGaN/GaN HEMT on 3C-SiC/Low-Resistivity Si Substrate for Microwave Applications Open Access

    Akio WAKEJIMA  Arijit BOSE  Debaleen BISWAS  Shigeomi HISHIKI  Sumito OUCHI  Koichi KITAHARA  Keisuke KAWAMURA  

     
    INVITED PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    457-465

    A detailed investigation of DC and RF performance of AlGaN/GaN HEMT on 3C-SiC/low resistive silicon (LR-Si) substrate by introducing a thick GaN layer is reported in this paper. The hetero-epitaxial growth is achieved by metal organic chemical vapor deposition (MOCVD) on a commercially prepared 6-inch LR-Si substrate via a 3C-SiC intermediate layer. The reported HEMT exhibited very low RF loss and thermally stable amplifier characteristics with the introduction of a thick GaN layer. The temperature-dependent small-signal and large-signal characteristics verified the effectiveness of the thick GaN layer on LR-Si, especially in reduction of RF loss even at high temperatures. In summary, a high potential of the reported device is confirmed for microwave applications.

  • An Efficient LE-FDTD Method for the Analysis of the Active Integrated Circuit and Antenna Mounted Non-linear Devices

    Kazuhiro FUJIMORI  Naoto KAWASHIMA  Minoru SANAGI  Shigeji NOGI  

     
    PAPER-Antennas/Systems

      Vol:
    E90-C No:9
      Page(s):
    1776-1783

    The trend of microwave circuits has been toward highly integrated systems. Most design tools for designing microwave circuits mounted the linear or the nonlinear devices adopt the fundamental circuit theory using the S matrix on the frequency domain. The harmonic balance method is also used to correspond to the nonlinear circuit. Therefore, the effect of the electromagnetic field, for example, a mutual coupling between sub-circuits through the space is almost disregarded. To calculate these circuits included its surrounding electromagnetic field, the finite difference time domain method combined with the equivalent circuit simulation had been presented as the lumped element FDTD (LE-FDTD) method. In general, even if an analytical target is a linear circuit, the FDTD method requires very long analytical time. In this paper, we propose an efficient LE-FDTD method to reduce the analytical time. We investigate its efficiency to compare with the conventional LE-FDTD method or measurements, consequently, it is confirmed that the proposal method requires only at analytical time of 1/10 compared with the conventional method. We also show that the proposal method is able to analyze characteristics of the active integrated antenna (AIA) which are practicably impossible to analyze by using the conventional method.

  • Design Formulae for Microwave Amplifiers Employing Conditionally-Stable Transistors

    Kimberley W. ECCLESTON  

     
    PAPER-Active Devices and Circuits

      Vol:
    E82-C No:7
      Page(s):
    1054-1060

    When designing microwave amplifiers, it is the task to select values of the source (input generator) and load reflection coefficients for the transistor, to achieve certain amplifier performance requirements and ensure stability. For unconditionally stable transistors, simultaneous conjugate matching can be achieved using well-known design formulae. Under this condition, the gain is maximised, and the input and output ports are matched. On the other hand when the transistor is conditionally stable, source and load reflection coefficients are selected using graphical design methods, involving gain and stability circles. To eliminate the reliance on graphical techniques, this paper shows the derivation of explicit design formulae that ensure maximum gain for a minimum specified safety margin, with one port matched. In this work, the safety margin is the distance between the chosen source or load reflection coefficient and its respective stability circle. In a production environment, where the circuit and transistor parameters are subject to random variations, the safety margin therefore makes allowance for such variations. This paper shows that the design problem for conditionally stable transistors can be reduced from the selection of values for two complex variables (port terminations) to the selection of the value for just one scalar variable.

  • Stability Conditions of Two Port Networks Considering Load Conditions

    Yoshihiro MIWA  

     
    LETTER

      Vol:
    E81-C No:6
      Page(s):
    953-958

    The purpose of this letter is to investigate the stability conditions of the active two port networks having some restrictions on load and source terminations, and then they have been obtained. Next, these results and the previous stability coditions are investigated, and then the new combined stability condition are proposed.

  • A Low Distortion and High Efficiency Paralleled Power Amplifier without an Isolator in Wide Range of Load Impedances

    Hikaru IKEDA  Hiroaki KOSUGI  Tomoki UWANO  

     
    PAPER

      Vol:
    E80-C No:6
      Page(s):
    763-767

    Characteristics of a distortion, gain and efficiency of a power amplifier grow worse extremely by different phases of the load reflection coefficient when load impedances of the power amplifier are far from 50 Ω. It was found that the value of the distortion, gain and efficiency showed the tradeoff behavior when the phase of the reflection coefficient was different in 180 degrees. Therefore we have proposed new two- and four-parallel unit power amplifiers combined in 90 degree and 45 degree different phases each in order to accomplish low distortion and high efficiency in wide range of load impedances without an isolator. We studied the power amplifiers by simulation based on experiments and realized an amplifier in that adjacent channel leakage power of π/4-DQPSK modulation (for Japan's digital cellular system) is less than -45 dBc and efficiency is over 45% in range of load VSWR less than 3.

  • Stability of Terminated Two Port Networks

    Yoshihiro MIWA  

     
    LETTER-Electronic Circuits

      Vol:
    E79-C No:8
      Page(s):
    1171-1176

    The purpose of this letter is to investigate the stability of the active two port networks having some restrictions on load and source terminations, and the stability conditions having two inequalities have been obtained. As the terminations making the active two port networks stable can be obtained from these inequalities, these stability conditions are very useful for designing high frequency amplifiers, especially, tuned amplifiers.

  • Stability of an Active Two Port Network in terms of S Parameters

    Yoshihiro MIWA  

     
    PAPER-Electronic Circuits

      Vol:
    E77-C No:3
      Page(s):
    498-509

    The stability conditions and stability factors of terminated active two port networks are investigated. They are expressed with the S parameters of active devices and the radii and centers of the circles defined by source and load terminations. The stability conditions are applied to specific cases. Some of the results correspond to the stability conditions expressed in Z, Y, H or G parameters and one of the other stability conditions of terminated two port network is similar to that for passive terminations which is expressed in S parameters. The various results derived in this paper are very useful for checking the stability of amplifiers, because both stability conditions and stability factors are simply calculated by using the S parameters without using the graphical method or transforming S parameters to Z, Y, H or G parameters. These stability conditions can be also used even if negative input or output resistance appears and even if the real part of source or load immittance is negative.