The search functionality is under construction.

Keyword Search Result

[Keyword] multiple antennas(23hit)

1-20hit(23hit)

  • Low Complexity Statistic Computation for Energy Detection Based Spectrum Sensing with Multiple Antennas

    Shusuke NARIEDA  Hiroshi NARUSE  

     
    PAPER-Communication Theory and Signals

      Vol:
    E103-A No:8
      Page(s):
    969-977

    This paper presents a novel statistic computation technique for energy detection-based spectrum sensing with multiple antennas. The presented technique computes the statistic for signal detection after combining all the signals. Because the computation of the statistic for all the received signals is not required, the presented technique reduces the computational complexity. Furthermore, the absolute value of all the received signals are combined to prevent the attenuation of the combined signals. Because the statistic computations are not required for all the received signals, the reduction of the computational complexity for signal detection can be expected. Furthermore, the presented technique does not need to choose anything, such as the binary phase rotator in the conventional technique, and therefore, the performance degradation due to wrong choices can be avoided. Numerical examples indicate that the spectrum sensing performances of the presented technique are almost the same as those of conventional techniques despite the complexity of the presented technique being less than that of the conventional techniques.

  • Eigen Domain Channel-Unaware Narrowband Interference Suppression for Time Synchronization

    Fengwei LIU  Hongzhi ZHAO  Ying LIU  Youxi TANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1151-1156

    In this paper, we propose a channel-unaware algorithm to suppress the narrowband interference (NBI) for the time synchronization, where multiple antennas are equipped at the receiver. Based on the fact that the characteristics of synchronization signal are different from those of NBI in both the time and spatial domain, the proposed algorithm suppresses the NBI by utilizing the multiple receive antennas in the eigen domain of NBI, where the eigen domain is obtained from the time domain statistical information of NBI. Because time synchronization involves incoherent detection, the proposed algorithm does not use the desired channel information, which is different from the eigen domain interference rejection combining (E-IRC). Simulation results show, compared with the traditional frequency domain NBI suppression technique, the proposed algorithm has about a 2 dB gain under the same probability of detection.

  • Impact of Antenna Correlation on Optimum Improved Energy Detector in Cognitive Radio

    Sanket S. KALAMKAR  Abhishek K. GUPTA  Adrish BANERJEE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:8
      Page(s):
    1690-1699

    This paper investigates the detection performance of an improved energy detector for a secondary user with spatially correlated multiple antennas. In an improved energy detector, an arbitrary positive power operation p replaces the squaring operation in a conventional energy detector, and the optimum value of p that gives the best detection performance may be different from 2. Firstly, for a given value of p, we derive closed-form expressions for the probability of detection and the probability of false alarm when antennas at the secondary user are exponentially correlated. We then find the optimum value of p for two different detection criteria-maximizing the probability of detection for a target probability of false alarm, and minimizing the probability of false alarm for a target probability of detection. We show that the optimum p is strongly dependent on system parameters like number of antennas, antenna correlation coefficient among multiple antennas, and average received signal-to-noise ratio (SNR). From results, we infer that, in low SNR regime, the effect of antenna correlation is less pronounced on the optimum p. Finally, we find the optimum values of p and threshold jointly that minimize the total error rate.

  • Fundamental Study on UWB Radar for Respiration and Heartbeat Detection

    Huan-Bang LI  Ryu MIURA  

     
    PAPER

      Vol:
    E97-B No:3
      Page(s):
    594-601

    Detection of human respiration and heartbeat is an essential demand in medical monitoring, healthcare vigilance, as well as in rescue activities after earthquakes. Radar is an important tool to detect human respiration and heartbeat. Compared to body-attached sensors, radar has the advantage of conducting detection without contacting the subject, which is favorable in practical usage. In this paper, we conduct fundamental studies on ultra-wideband (UWB) radar for detection of the respiration and heartbeat by computer simulations. The main achievement of our work is the development of a UWB radar simulation system. Using the developed simulation system, three UWB frequency bands, i.e., 3.4-4.8GHz, 7.25-10.25GHz, as well as 3.1-10.6GHz, are compared in terms of their respiration and heartbeat detection performance. Our results show that the first two bands present identical performance, while the third one presents much better performance. The effects of using multiple antennas are also evaluated. Our results show that increasing the number of antennas can steadily increase the detection ability.

  • Secure Communication of the Multi-Antenna Channel Using Cooperative Relaying and Jamming

    Haiyan XU  Qian TIAN  Jianhui WU  Fulong JIANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:4
      Page(s):
    948-955

    In this paper we establish a secure communication model where eavesdropper and intended receiver have multiple antennas. We use cooperation and jamming to achieve physical layer security. First, we study how to allocate power between the information bearing signal and the jamming signal. Second, based on this model, we also jointly optimize both the information bearing signal weights and the jamming signal weights to improve physical layer security. The optimal power allocation and the weights are obtained via an iteration algorithm to maximize the secrecy rate. Comparing with equal power allocation and some other different methods, it shows that using cooperative relaying and jamming can significantly improve the physical layer security from the simulation results.

  • Effect of Multiple Antennas on the Transport Capacity in Large-Scale Ad Hoc Networks

    Won-Yong SHIN  Koji ISHIBASHI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E95-B No:10
      Page(s):
    3113-3119

    A one-dimensional ad hoc network with a single active source–destination pair is analyzed in terms of transport capacity, where each node uses multiple antennas. The analysis is based on using a multi-hop opportunistic routing transmission in the presence of fading. Specifically, the lower and upper bounds on the transport capacity are derived and their scaling law is analyzed as the node density, λ, is assumed to be infinitely large. The lower and upper bounds are shown to have the same scaling (ln λ)1/α, where α denotes the path-loss exponent. We also show that using multiple antennas at each node does not fundamentally change the scaling law.

  • Performance Improvement in Cognitive Radio Systems with Correlated Multiple Antennas

    Yixian LIU  Yide WANG  Gang WEI  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:4
      Page(s):
    1053-1056

    The performance of spectrum sensing in cognitive radio can be improved by employing multiple antennas. In this letter, the effect of antenna correlation on the performance improvement by deploying multiple antennas in the sensing node of the secondary system is investigated. It is proved mathematically that in the regime of low SNR, with antenna correlation, the secondary sensing node can achieve almost the same performance improvement as that without correlation. Simulation results verify the conclusions.

  • Performance Analysis in Cognitive Radio Systems with Multiple Antennas

    Peng WANG  Xiaofeng ZHONG  Limin XIAO  Shidong ZHOU  Jing WANG  Yong BAI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    182-186

    In this letter, the performance improvement by the deployment of multiple antennas in cognitive radio systems is studied from a system-level view. The term opportunistic spectrum efficiency (OSE) is defined as the performance metric to evaluate the spectrum opportunities that can actually be exploited by the secondary user (SU). By applying a simple energy combining detector, we show that deploying multiple antennas at the SU transceiver can improve the maximum achievable OSE significantly. Numerical results also reveal that the improvement comes from the reduction of both the detection overhead and the false alarm probability.

  • An LTE-Band Dual-Antenna Design with an Enhanced Antenna Efficiency

    Jinyong KIM  Kyungho CHUNG  Yochuol HO  Moonil KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:11
      Page(s):
    3554-3556

    A neutralization line is internally added to a 770 MHz LTE-band miniature dual-antenna system to improve its antenna efficiency. The odd-mode antenna impedance simulations indicate that the position of the neutralization line along the radiating structure determines the operation frequency. Measurement results show that the line reduces the antenna coupling loss from -6 to -17 dB while improving the individual antenna efficiency from 42 to 65 percent at 770 MHz.

  • New Minimum Decoding Complexity Quasi-Orthogonal Space-Time Block Code for 8 Transmit Antennas

    Changhyeon CHAE  Daewon CHOI  Taejin JUNG  

     
    PAPER-MIMO

      Vol:
    E91-A No:10
      Page(s):
    2990-2994

    In this paper, a new full-rate space-time block code (STBC) possessing a quasi-orthogonal (QO) property is proposed for QAM and 8 transmit antennas. This code is designed by serially concatenating a real constellation-rotating precoder with the Alamouti scheme. The QO property enables ML decoding to be done with joint detection of only four real symbols like the conventional minimum decoding complexity QO-STBC (MDC-QO-STBC). However, the proposed code is guaranteed to achieve full spatial diversity for general QAM unlike the MDC-QO-STBC which is specifically presented for only 4-QAM. By computer simulation results, we show that the proposed code exhibits the identical and slightly degraded error performance with the MDC-QO-STBC for 4-QAM and the Sharma's QO-STBC for 4 and 16-QAM, respectively. Finally, we present a new modified scheme of the original code so that there is no any discontinuity of transmission at each transmit antenna, without any loss of error performance.

  • Design of New Quasi-Orthogonal STBC with Minimum Decoding Complexity for Four Transmit Antennas

    Changhyeon CHAE  Taejin JUNG  Intae HWANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3368-3370

    A new Space-Time Block Code (STBC) achieving full rate and full diversity for general QAM and four transmit antennas is proposed. This code also possesses a quasi-orthogonal (QO) property like the conventional Minimum Decoding Complexity QO-STBC (MDC-QO-STBC), leading to joint ML detection of only two real symbols. The proposed code is shown to exhibit the identical error performance with the existing MDC-QO-STBC. However, the proposed code has an advantage in transceiver implementation since this code can be modified so that the increase of PAPR occurs on only two transmit antennas, whereas MDC-QO-STBC incurs a PAPR increase on all transmit antennas.

  • A Study on Improving the System Performance for Wireless Personal Area Networks

    Bon-Wook KOO  Jee-Hoon KIM  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2413-2417

    An enormous amount of multimedia data will be transmitted by various devices connected to the wireless personal area network, and this network environment will require very high transmission capacity. In this letter, we apply multiple antennas to the MB-OFDM UWB system for high performance. With an emphasis on a preamble design for multi-channel separation, we address the channel estimation in the MB-OFDM system with multiple antennas. By properly designing each preamble so that the multiple antennas remain orthogonal in the time domain, the channel estimation can be applied to the MB-OFDM specification in the case of more than 2 transmit antennas. By using the multiple-antenna scheme and proposed channel estimation technique, the reliability and performance of the MB-OFDM system can be improved.

  • A Joint Method of Cell Searching and DoA Estimation for a Mobile Relay Station with Beamforming Antennas

    Yo-Han KO  Yong-Soo CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2439-2442

    In this letter, a mobile relay station (MRS) for vehicles with beamforming antennas is considered to increase the reliability of transmission link, especially for the MRS at cell boundary. Joint methods for cell searching and DoA estimation are proposed to form a beam in the direction of target BS while nulling interferences from adjacent BSs, especially for IP-based cellular systems employing break-before-make handover or make-before-break handover. The proposed cell searching and DoA estimation methods are evaluated by computer simulation under the environment of IEEE 802.16e (WiBro).

  • Virtual Subcarrier Assignment (VISA) for Spatial Filtering of OFDM Signals

    Shinsuke HARA  Yunjian JIA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:11
      Page(s):
    3055-3064

    In this paper, we propose a novel spatial filtering technique for orthogonal frequency division multiplexing (OFDM) signals called "VIrtual Subcarrier Assignment (VISA)." Here, virtual subcarrier is a subcarrier which is not used for data transmission. When a wireless terminal is equipped with multiple antennas, VISA can easily achieve a space division multiple access (SDMA) by assigning a different spectral position of virtual subcarrier to a different user. To realize VISA in an already-existing OFDM-based wireless local area network (WLAN), we discuss an antenna weight control method in the preamble of a signal burst format designed for the IEEE802.11a standard and evaluate the bit error rate (BER) performance in typical indoor wireless environments.

  • High Rate Space Time Block Codes

    Jaehak CHUNG  Seung Hoon NAM  Chan-Soo HWANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E89-B No:4
      Page(s):
    1420-1422

    High Rate Space-Time Block Codes (HR-STBCs) with greater than 1 symbol/transmission and simple decoding schemes are proposed. The HR-STBC demonstrates 3 dB Eb/No gain at BER = 10-3 compared with the conventional STBC when three transmit antennas and two receive antennas are utilized.

  • An Efficient Scheme for Transmit Antenna Diversity with Limited Feedback Channel Rate

    Seung Hoon SHIN  Bong Kwan CHO  Hyeon Chyeol HWANG  Kyung Sup KWAK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:8
      Page(s):
    3471-3474

    In this letter, we propose an efficient closed-loop transmit (Tx) diversity scheme that works well for high mobility as well as low mobility. The proposed scheme exploits a quantized weight vector codebook designed by separating it into gain and phase codebooks. Simulation results reveal that the proposed scheme can provide a significant advantage in both complexity and flexibility over conventional methods.

  • Approximate Maximum Likelihood Approach for Code Acquisition in DS-CDMA Systems with Multiple Antennas

    Sangchoon KIM  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E88-B No:3
      Page(s):
    1054-1065

    The problem of estimating code timings in DS-CDMA systems with multiple antennas is considered in the presence of multipath time-varying fading channels and near-far environments. We present an efficient algorithm for an approximate maximum likelihood approach of jointly estimating the multipath timings of a desired user for DS-CDMA systems that consist of multiple antennas either uncorrelated or fully correlated in space. The procedures of the algorithm to estimate code-timings are developed in order to better exploit the time-varying characteristics of the fading process. In the multipath fading channels, the solution of the proposed algorithms is based on successively optimizing the criterion for increasing numbers of multipath delays. It is shown via simulation results that the modified approaches of the approximate maximum likelihood algorithm much more improve its acquisition performance in the time-varying fading channels. It is seen that the acquisition performance of multiple antennas based acquisition scheme is much better than that of a single antenna based timing estimator in the presence of multipath fading channels and the near-far problem. Furthermore, it is observed that the proposed algorithms outperform the correlator and MUSIC estimator in the multiuser environments with near-far situation on time-varying Rayleigh fading channels.

  • An Iterative Hyperplane Projection Based Affine Projection Algorithm for Fast Converging Space-Time Adaptive Decision-Directed Equalizer

    Won-Cheol LEE  Chul RYU  Jin-Ho PARK  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:12
      Page(s):
    3673-3681

    This paper introduces an efficient affine projection algorithm (APA) using iterative hyperplane projection. The inherent effectiveness against the rank deficient problem has led APA to be the preferred algorithm to be employed for various applications over other variety of fast converging adaptation algorithms. However, the amount of complexity of the conventional APA could not be negligible because of the accomplishment of sample matrix inversion (SMI). Another issue is that the "shifting invariance property," which is typically exploited for single channel case, does not hold ground for space-time decision-directed equalizer (STDE) application deployed in single-input-multi-output (SIMO) systems. Therefore, fast adaptation schemes, such as fast traversal filter based APA (FTF-APA), becomes impossible to utilize. The motivation of this paper deliberates on finding an effective algorithm on the basis of APA, which yields low complexity while sustaining fast convergence as well as excellent tracking ability. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed. The performance of the proposed method is evaluated under wireless SIMO channel in respect to bit error rate (BER) behavior and computational complexity, and upon completion, the validity is confirmed.

  • Channel Estimation with Transmitter Diversity for High Rate WPAN Systems

    Dong-Jun CHO  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:11
      Page(s):
    3382-3384

    This letter presents an investigation of channel estimation scheme for a high rate WPAN system using multiple transmit antennas over indoor wireless channel. A simple algorithm utilizing the autocorrelation property of a CAZAC preamble is proposed for channel estimation. Simulation and analytical results show the performance of the proposed algorithm in terms of mean square error (MSE) of channel estimation. At the same time, the effect of imperfect channel estimation introduced by relatively large RMS delay spread is highlighted.

  • Diagonal Algebraic Space Time Coding with 8-Star-PSK Signals

    Pingyi FAN  

     
    PAPER-Fundamental Theories

      Vol:
    E87-B No:8
      Page(s):
    2182-2188

    Diagonal algebraic space time (DAST) block codes was proved to achieve the full transmit diversity over a quasi-static fading channel and to maintain 1 symbol/s/Hz. When the number of transmit antennas employed is larger than 2, DAST codes outperform the codes from orthogonal design with the equivalent spectral efficiency. However, due to the limitation on the signal constellation with complex integer points, no good 3bits/symbol DAST block code was given previously. In this paper, we propose a general form of 8-star-PSK constellations with integer points and present some theoretical results on the performance of the equivalent 8-star-PSK modulations. By using our proposed 8-star-PSKs, we present a searching algorithm to construct DAST codes with 3 bits per symbol under some criteria and investigate their performances over flat Rayleigh fading channels. It is shown that (5,2) 8-star-PSK scheme has a comparable performance to conventional 8PSK over additive white Gaussian noise (AWGN) channel and the corresponding DSAT codes constructed can achieve significant performance gain over flat Rayleigh fading channel.

1-20hit(23hit)