The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] nanodots(2hit)

1-2hit
  • Magnetic-Field Dependent Electron Transport of Fe3Si Nanodots

    Jialin WU  Katsunori MAKIHARA  Hai ZHANG  Noriyuki TAOKA  Akio OHTA  Seiichi MIYAZAKI  

     
    PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    616-621

    We fabricated Fe-silicide nanodots (NDs) on an ultrathin SiO2 layer and evaluated changes in electron transport properties with and without magnetic field application. High-density NDs with an areal density as high as ∼1011cm-2 were formed on thermally grown SiO2 by exposing ultrathin Fe/Si-NDs structures to a remote H2 plasma without external heating. In electron transport properties related to current-time characteristics for a diode with Fe electrode and charging energy to NDs, clear changes in current levels through NDs and electron injection modulation of NDs depending on intensity of magnetic fields were observed.

  • Embedding of Ti Nanodots into SiOx and Its Impact on Resistance Switching Behaviors

    Yusuke KATO  Akio OHTA  Mitsuhisa IKEDA  Katsunori MAKIHARA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    468-474

    We have studied the formation of Ti-nanodots (NDs) by remote H2 plasma (H2-RP) exposure and investigated how the embedding of Ti-NDs affects the resistive switching properties of Si-rich oxides (SiOx) because it is expected that NDs will trigger the formation of the conductive filament path in SiOx. Ti-NDs with an areal density as high as 1011 cm-2 were fabricated by exposing a Ge/Ti stacked layer to the H2-RP without external heating, and changes in the chemical structure of Ge/Ti stacked layer with the Ti-NDs formation were evaluated by using hard x-ray photoemission spectroscopy (HAXPES) and x-ray photoelectron spectroscopy (XPS). Resistive switching behaviors of SiOx with Ti-NDs were measured from current-voltage curves and compared to the results obtained from samples of SiOx with a Ti thin layer.