The search functionality is under construction.

Keyword Search Result

[Keyword] network caching(11hit)

1-11hit
  • CCN-Based Vehicle-to-Vehicle Communication in DSRC for Content Distribution in Urban Environments Open Access

    Haiyan TIAN  Yoshiaki SHIRAISHI  Masami MOHRI  Masakatu MORII  

     
    PAPER-System Construction Techniques

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1653-1664

    Dedicated Short Range Communication (DSRC) is currently standardized as a leading technology for the implementation of Vehicular Networks. Non-safety application in DSRC is emerging beyond the initial safety application. However, it suffers from a typical issue of low data delivery ratio in urban environments, where static and moving obstacles block or attenuate the radio propagation, as well as other technical issues such as temporal-spatial restriction, capital cost for infrastructure deployments and limited radio coverage range. On the other hand, Content-Centric Networking (CCN) advocates ubiquitous in-network caching to enhance content distribution. The major characteristics of CCN are compatible with the requirements of vehicular networks so that CCN could be available by vehicular networks. In this paper, we propose a CCN-based vehicle-to-vehicle (V2V) communication scheme on the top of DSRC standard for content dissemination, while demonstrate its feasibility by analyzing the frame format of Beacon and WAVE service advertisement (WSA) messages of DSRC specifications. The simulation-based validations derived from our software platform with OMNeT++, Veins and SUMO in realistic traffic environments are supplied to evaluate the proposed scheme. We expect our research could provide references for future more substantial revision of DSRC standardization for CCN-based V2V communication.

  • Compact CAR: Low-Overhead Cache Replacement Policy for an ICN Router

    Atsushi OOKA  Suyong EUM  Shingo ATA  Masayuki MURATA  

     
    PAPER-Network System

      Pubricized:
    2017/12/18
      Vol:
    E101-B No:6
      Page(s):
    1366-1378

    Information-centric networking (ICN) has gained attention from network research communities due to its capability of efficient content dissemination. In-network caching function in ICN plays an important role to achieve the design motivation. However, many researchers on in-network caching due to its ability to efficiently disseminate content. The in-network caching function in ICN plays an important role in realizing the design goals. However, many in-network caching researchers have focused on where to cache rather than how to cache: the former is known as content deployment in the network and the latter is known as cache replacement in an ICN router. Although the cache replacement has been intensively researched in the context of web-caching and content delivery network previously, networks, the conventional approaches cannot be directly applied to ICN due to the fine granularity of chunks in ICN, which eventually changes the access patterns. In this paper, we argue that ICN requires a novel cache replacement algorithm to fulfill the requirements in the design of a high performance ICN router. Then, we propose a novel cache replacement algorithm to satisfy the requirements named Compact CLOCK with Adaptive Replacement (Compact CAR), which can reduce the consumption of cache memory to one-tenth compared to conventional approaches. In this paper, we argue that ICN requires a novel cache replacement algorithm to fulfill the requirements set for high performance ICN routers. Our solution, Compact CLOCK with Adaptive Replacement (Compact CAR), is a novel cache replacement algorithm that satisfies the requirements. The evaluation result shows that the consumption of cache memory required to achieve a desired performance can be reduced by 90% compared to conventional approaches such as FIFO and CLOCK.

  • Two-Level Popularity-Oriented Cache Replacement Policy for Video Delivery over CCN

    Haipeng LI  Hidenori NAKAZATO  

     
    PAPER

      Vol:
    E99-B No:12
      Page(s):
    2532-2540

    We introduce a novel cache replacement policy to improve the entire network performance of video delivery over content-centric networking (CCN). In the case of the CCN structure, we argue that: 1) for video multiplexing scenario, general cache strategies that ignore the intrinsic linear time characteristic of video requests are unable to make better use of the cache resources, and 2) it is inadequate to simply extend the existing research conclusions of file-oriented popularity to chunk-by-chunk popularity, which are widely used in CCN. Unlike previous works in this field, the proposed policy in this study, named two-level popularity-oriented time-to-hold cache replacement policy (TLP-TTH), is designed on the basis of the following principles. Firstly, the proposed cache replacement strategy is customized for video delivery by carefully considering the essential auto-correlated request feature of video chunks within a video file. Furthermore, the popularity in video delivery is subdivided into two levels, namely chunk-level access probability and file-level popularity, in order to efficiently utilize cache resources. We evaluated the proposed policy in both a hierarchical topology and a real network based hybrid topology, and took viewers departure into consideration as well. The results validate that for video delivery over CCN, TLP-TTH policy improves the network performance from several aspects. In particular, we observed that the proposed policy not only increases the cache hit ratio at the edge of the network but the cache utilization at the intermediate routers is also improved markedly. Further, with respect to the video popularity variation scenario, the cache hit ratio of TLP-TTH policy responds sensitively to maintain efficient cache utilization.

  • Gain-Aware Caching Scheme Based on Popularity Monitoring in Information-Centric Networking

    Long CHEN  Hongbo TANG  Xingguo LUO  Yi BAI  Zhen ZHANG  

     
    PAPER-Network

      Pubricized:
    2016/05/19
      Vol:
    E99-B No:11
      Page(s):
    2351-2360

    To efficiently utilize storage resources, the in-network caching system of Information-Centric Networking has to deal with the popularity of huge content chunks which could cause large memory consumption. This paper presents a Popularity Monitoring based Gain-aware caching scheme, called PMG, which is an integrated design of cache placement and popularity monitoring. In PMG, by taking into account both the chunk popularity and the consumption saving of single cache hit, the cache placement process is transformed into a weighted popularity comparison, while the chunks with high cache gain are placed on the node closer to the content consumer. A Bloom Filter based sliding window algorithm, which is self-adaptive to the dynamic request rate, is proposed to capture the chunks with higher caching gain by Inter-Reference Gap (IRG) detection. Analysis shows that PMG can drastically reduce the memory consumption of popularity monitoring, and the simulation results confirm that our scheme can achieve popularity based cache placement and get better performance in terms of bandwidth saving and cache hit ratio when content popularity changes dynamically.

  • Multi-ISP Cooperative Cache Sharing for Saving Inter-ISP Transit Cost in Content Centric Networking

    Kazuhito MATSUDA  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E98-B No:4
      Page(s):
    621-629

    Content-Centric Networking (CCN) has an in-network caching mechanism, which can reduce the traffic volume along the route to the destination host. This traffic volume reduction on the transit link can decrease inter-ISP transit cost. However, the memory space for caching in CCN routers is small relative to content volume. In addition, any initial access to the content requested by a user must use the transit link, even when a nearby CCN router outside the route has the cached content. In this paper, we propose a method of cooperative cache sharing among CCN routers in multiple ISPs. It aims to attain a further reduction in the inter-ISP transit cost by improving the cache hit ratio. In the proposed method, the CCN routers share the memory space for caching of non-overlapping cache content. We evaluate the proposed method by simulation experiments using the IP-level network topology of actual ISP, and show that the inter-ISP transit traffic can be reduced by up to 28% compared with normal caching behavior of CCN.

  • Local Tree Hunting: Finding Closest Contents from In-Network Cache

    Hiroshi SHIMIZU  Hitoshi ASAEDA  Masahiro JIBIKI  Nozomu NISHINAGA  

     
    PAPER-Internet Architecture and Protocols

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    557-564

    How to retrieve the closest content from an in-network cache is one of the most important issues in Information-Centric Networking (ICN). This paper proposes a novel content discovery scheme called Local Tree Hunting (LTH). By adding branch-cast functionality to a local tree for content requests to a Content-Centric Network (CCN) response node, the discovery area for caching nodes expands. Since the location of such a branch-casting node moves closer to the request node when the content is more widely cached, the discovery range, i.e. the branch size of the local tree, becomes smaller. Thus, the discovery area is autonomously adjusted depending on the content dissemination. With this feature, LTH is able to find the “almost true closest” caching node without checking all the caching nodes in the in-network cache. The performance analysis employed in Zipf's law content distribution model and which uses the Least Recently Used eviction rule shows the superiority of LTH with respect to identifying the almost exact closest cache.

  • Adaptive TTL Control to Minimize Resource Cost in Hierarchical Caching Networks

    Satoshi IMAI  Kenji LEIBNITZ  Masayuki MURATA  

     
    PAPER-Internet Architecture and Protocols

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    565-577

    Content caching networks like Information-Centric Networking (ICN) are beneficial to reduce the network traffic by storing content data on routers near to users. In ICN, it becomes an important issue to manage system resources, such as storage and network bandwidth, which are influenced by cache characteristics of each cache node. Meanwhile, cache aging techniques based on Time-To-Live (TTL) of content facilitate analyzing cache characteristics and can realize appropriate resource management by setting efficient TTLs. However, it is difficult to search for the efficient TTLs in a distributed cache system connected by multiple cache nodes. Therefore, we propose an adaptive control mechanism of the TTL value of content in distributed cache systems by using predictive models which can estimate the impact of the TTL values on network resources and cache performance. Furthermore, we show the effectiveness of the proposed mechanism.

  • In-Network Cache Management Based on Differentiated Service for Information-Centric Networking

    Qian HU  Muqing WU  Hailong HAN  Ning WANG  Chaoyi ZHANG  

     
    PAPER

      Vol:
    E97-B No:12
      Page(s):
    2616-2626

    As a promising future network architecture, Information-centric networking (ICN) has attracted much attention, its ubiquitous in-network caching is one of the key technologies to optimize the dissemination of information. However, considering the diversity of contents and the limitation of cache resources in the Internet, it is usually difficult to find a one-fit-all caching strategy. How to manage the ubiquitous in-network cache in ICN has become an important problem. In this paper, we explore ways to improve cache performance from the three perspectives of spatiality, temporality and availability, based on which we further propose an in-network cache management strategy to support differentiated service. We divide contents requested in the network into different levels and the selection of caching strategies depends on the content level. Furthermore, the corresponding models of utilizing cache resources in spatiality, temporality and availability are also derived for comparison and analysis. Simulation verifies that our differentiated service based cache management strategy can optimize the utilization of cache resources and get higher overall cache performance.

  • Workload-Aware Caching Policy for Information-Centric Networking

    Qian HU  Muqing WU  Song GUO  Hailong HAN  Chaoyi ZHANG  

     
    PAPER-Network

      Vol:
    E97-B No:10
      Page(s):
    2157-2166

    Information-centric networking (ICN) is a promising architecture and has attracted much attention in the area of future Internet architectures. As one of the key technologies in ICN, in-network caching can enhance content retrieval at a global scale without requiring any special infrastructure. In this paper, we propose a workload-aware caching policy, LRU-GT, which allows cache nodes to protect newly cached contents for a period of time (guard time) during which contents are protected from being replaced. LRU-GT can utilize the temporal locality and distinguish contents of different popularity, which are both the characteristics of the workload. Cache replacement is modeled as a semi-Markov process under the Independent Reference Model (IRM) assumption and a theoretical analysis proves that popular contents have longer sojourn time in the cache compared with unpopular ones in LRU-GT and the value of guard time can affect the cache hit ratio. We also propose a dynamic guard time adjustment algorithm to optimize the performance. Simulation results show that LRU-GT can reduce the average hops to get contents and improve cache hit ratio.

  • Incrementally Updatable Bloom Filter and Network Application

    MyungKeun YOON  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:11
      Page(s):
    3484-3486

    Bloom filters are widely used for various network applications. Because of the limited size of on-chip memory and the large volume of network traffic, Bloom filters are often required to update their contents incrementally. Two techniques have been used for this purpose: cold cache and double buffering. Cold cache outperforms double buffering in terms of the average cache ratio. However, double buffering works much better than cold cache for the worst-case cache hit ratio. In this paper, we propose a new updating scheme for Bloom filters, which updates the contents of Bloom filter incrementally while the assigned memory space is fully utilized. The proposed scheme works better than cold cache in terms of the average cache hit ratio. At the same time, it outperforms double buffering for the worst-case cache hit ratio.

  • One-Pass Semi-Dynamic Network Decoding Using a Subnetwork Caching Model for Large Vocabulary Continuous Speech Recongnition

    Dong-Hoon AHN  Minhwa CHUNG  

     
    PAPER

      Vol:
    E87-D No:5
      Page(s):
    1164-1174

    This paper presents a new decoding framework for large vocabulary continuous speech recognition that can handle a static search network dynamically. Generally, a static network decoder can use a search space that is globally optimized in advance, and therefore it can run at high speed during decoding. However, its large memory requirement due to the large network size or the spatial complexity of the optimization algorithm often makes it impractical. Our new one-pass semi-dynamic network decoding scheme aims at incorporating such an optimized search network with memory efficiency, but without losing speed. In this framework, a complete search network is organized on the basis of self-structuring subnetworks and is nearly minimized using a modified tail-sharing algorithm. While the decoder runs, it caches subnetworks needed for decoding in memory, whereas static network decoders keep the complete network in memory. The subnetwork caching model is controlled by two levels of caches: local cache obtained by subnetwork caching operations and global cache obtained by subnetwork preloading operations. The model can also be controlled adaptively by using subnetwork profiling operations. Furthermore, it is made simple and fast with compactly designed self-structuring subnetworks. Experimental results on a 25 k-word Korean broadcast news transcription task show that the semi-dynamic decoder can run almost as fast as an equivalent static network decoder under various memory configurations by using the subnetwork caching model.