The search functionality is under construction.

Keyword Search Result

[Keyword] online algorithm(23hit)

1-20hit(23hit)

  • Best Possible Algorithms for One-Way Trading with Only the Maximum Fluctuation Ratio Available

    Hiroshi FUJIWARA  Keiji HIRAO  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:3
      Page(s):
    278-285

    In Variant 4 of the one-way trading game [El-Yaniv, Fiat, Karp, and Turpin, 2001], a player has one dollar at the beginning and wants to convert it to yen only by one-way conversion. The exchange rate is guaranteed to fluctuate between m and M, and only the maximum fluctuation ratio φ = M/m is informed to the player in advance. The performance of an algorithm for this game is measured by the competitive ratio. El-Yaniv et al. derived the best possible competitive ratio over all algorithms for this game. However, it seems that the behavior of the best possible algorithm itself has not been explicitly described. In this paper we reveal the behavior of the best possible algorithm by solving a linear optimization problem. The behavior turns out to be quite different from that of the best possible algorithm for Variant 2 in which the player knows m and M in advance.

  • Optimal Online Bin Packing Algorithms for Some Cases with Two Item Sizes

    Hiroshi FUJIWARA  Masaya KAWAGUCHI  Daiki TAKIZAWA  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/03/07
      Vol:
    E106-A No:9
      Page(s):
    1100-1110

    The bin packing problem is a problem of finding an assignment of a sequence of items to a minimum number of bins, each of capacity one. An online algorithm for the bin packing problem is an algorithm that irrevocably assigns each item one by one from the head of the sequence. Gutin, Jensen, and Yeo (2006) considered a version in which all items are only of two different sizes and the online algorithm knows the two possible sizes in advance, and gave an optimal online algorithm for the case when the larger size exceeds 1/2. In this paper we provide an optimal online algorithm for some of the cases when the larger size is at most 1/2, on the basis of a framework that facilitates the design and analysis of algorithms.

  • Online Removable Knapsack Problem for Integer-Sized Unweighted Items Open Access

    Hiroshi FUJIWARA  Kanaho HANJI  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/03/08
      Vol:
    E105-A No:9
      Page(s):
    1195-1202

    In the online removable knapsack problem, a sequence of items, each labeled with its value and its size, is given one by one. At each arrival of an item, a player has to decide whether to put it into a knapsack or to discard it. The player is also allowed to discard some of the items that are already in the knapsack. The objective is to maximize the total value of the knapsack. Iwama and Taketomi gave an optimal algorithm for the case where the value of each item is equal to its size. In this paper we consider a case with an additional constraint that the capacity of the knapsack is a positive integer N and that the sizes of items are all integral. For each positive integer N, we design an algorithm and prove its optimality. It is revealed that the competitive ratio is not monotonic with respect to N.

  • Analysis of Lower Bounds for Online Bin Packing with Two Item Sizes

    Hiroshi FUJIWARA  Ken ENDO  Hiroaki YAMAMOTO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/09
      Vol:
    E104-A No:9
      Page(s):
    1127-1133

    In the bin packing problem, we are asked to place given items, each being of size between zero and one, into bins of capacity one. The goal is to minimize the number of bins that contain at least one item. An online algorithm for the bin packing problem decides where to place each item one by one when it arrives. The asymptotic approximation ratio of the bin packing problem is defined as the performance of an optimal online algorithm for the problem. That value indicates the intrinsic hardness of the bin packing problem. In this paper we study the bin packing problem in which every item is of either size α or size β (≤ α). While the asymptotic approximation ratio for $alpha > rac{1}{2}$ was already identified, that for $alpha leq rac{1}{2}$ is only partially known. This paper is the first to give a lower bound on the asymptotic approximation ratio for any $alpha leq rac{1}{2}$, by formulating linear optimization problems. Furthermore, we derive another lower bound in a closed form by constructing dual feasible solutions.

  • Exploring the Outer Boundary of a Simple Polygon

    Qi WEI  Xiaolin YAO  Luan LIU  Yan ZHANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/04/02
      Vol:
    E104-D No:7
      Page(s):
    923-930

    We investigate an online problem of a robot exploring the outer boundary of an unknown simple polygon P. The robot starts from a specified vertex s and walks an exploration tour outside P. It has to see all points of the polygon's outer boundary and to return to the start. We provide lower and upper bounds on the ratio of the distance traveled by the robot in comparison to the length of the shortest path. We consider P in two scenarios: convex polygon and concave polygon. For the first scenario, we prove a lower bound of 5 and propose a 23.78-competitive strategy. For the second scenario, we prove a lower bound of 5.03 and propose a 26.5-competitive strategy.

  • Asymptotic Approximation Ratios for Certain Classes of Online Bin Packing Algorithms

    Hiroshi FUJIWARA  Yuta WANIKAWA  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2020/10/12
      Vol:
    E104-D No:3
      Page(s):
    362-369

    The performance of online algorithms for the bin packing problem is usually measured by the asymptotic approximation ratio. However, even if an online algorithm is explicitly described, it is in general difficult to obtain the exact value of the asymptotic approximation ratio. In this paper we show a theorem that gives the exact value of the asymptotic approximation ratio in a closed form when the item sizes and the online algorithm satisfy some conditions. Moreover, we demonstrate that our theorem serves as a powerful tool for the design of online algorithms combined with mathematical optimization.

  • Program File Placement Strategies for Machine-to-Machine Service Network Platform in Dynamic Scenario

    Takehiro SATO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2020/05/08
      Vol:
    E103-B No:11
      Page(s):
    1353-1366

    The machine-to-machine (M2M) service network platform that accommodates and controls various types of Internet of Things devices has been presented. This paper investigates program file placement strategies for the M2M service network platform that achieve low blocking ratios of new task requests and accommodate as many tasks as possible in the dynamic scenario. We present four strategies for determining program file placement, which differ in the computation method and whether the relocation of program files being used by existing tasks is allowed or not. Simulation results show that a strategy based on solving a mixed-integer linear programming model achieves the lowest blocking ratio, but a heuristic algorithm-based strategy can be an attractive option by allowing recomputation of the placement when the placement cannot be obtained at the timing of new task request arrival.

  • Bounds for the Multislope Ski-Rental Problem

    Hiroshi FUJIWARA  Kei SHIBUSAWA  Kouki YAMAMOTO  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:3
      Page(s):
    481-488

    The multislope ski-rental problem is an online optimization problem that generalizes the classical ski-rental problem. The player is offered not only a buy and a rent options but also other options that charge both initial and per-time fees. The competitive ratio of the classical ski-rental problem is known to be 2. In contrast, the best known so far on the competitive ratio of the multislope ski-rental problem is an upper bound of 4 and a lower bound of 3.62. In this paper we consider a parametric version of the multislope ski-rental problem, regarding the number of options as a parameter. We prove an upper bound for the parametric problem which is strictly less than 4. Moreover, we give a simple recurrence relation that yields an equation having a lower bound value as its root.

  • Approximate Frequent Pattern Discovery in Compressed Space

    Shouhei FUKUNAGA  Yoshimasa TAKABATAKE  Tomohiro I  Hiroshi SAKAMOTO  

     
    PAPER

      Pubricized:
    2017/12/19
      Vol:
    E101-D No:3
      Page(s):
    593-601

    A grammar compression is a restricted context-free grammar (CFG) that derives a single string deterministically. The goal of a grammar compression algorithm is to develop a smaller CFG by finding and removing duplicate patterns, which is simply a frequent pattern discovery process. Any frequent pattern can be obtained in linear time; however, a huge working space is required for longer patterns, and the entire string must be preloaded into memory. We propose an online algorithm to address this problem approximately within compressed space. For an input sequence of symbols, a1,a2,..., let Gi be a grammar compression for the string a1a2…ai. In this study, an online algorithm is considered one that can compute Gi+1 from (Gi,ai+1) without explicitly decompressing Gi. Here, let G be a grammar compression for string S. We say that variable X approximates a substring P of S within approximation ratio δ iff for any interval [i,j] with P=S[i,j], the parse tree of G has a node labeled with X that derives S[l,r] for a subinterval [l,r] of [i,j] satisfying |[l,r]|≥δ|[i,j]|. Then, G solves the frequent pattern discovery problem approximately within δ iff for any frequent pattern P of S, there exists a variable that approximates P within δ. Here, δ is called the approximation ratio of G for S. Previously, the best approximation ratio obtained by a polynomial time algorithm was Ω(1/lg2|P|). The main contribution of this work is to present a new lower bound Ω(1/<*|S|lg|P|) that is smaller than the previous bound when lg*|S|

  • Competitive Analysis for the 3-Slope Ski-Rental Problem with the Discount Rate

    Hiroshi FUJIWARA  Shunsuke SATOU  Toshihiro FUJITO  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1075-1083

    In the 3-slope ski-rental problem, the player is asked to determine a strategy, that is, (i) whether to buy a ski wear and then a ski set separately, or to buy them at once for a discount price, and (ii) when to buy these goods. If the player has not got any thing, he/she can rent it for some price. The objective is to minimize the total cost, under the assumption that the player does not know how many times he/she goes skiing in the future. We reveal that even with a large discount for buying at once available, there is some price setting for which to buy the goods separately is a more reasonable choice. We also show that the performance of the optimal strategy may become arbitrarily worse, when a large discount is offered.

  • Online Weight Balancing on the Unit Circle

    Hiroshi FUJIWARA  Takahiro SEKI  Toshihiro FUJITO  

     
    PAPER

      Pubricized:
    2015/12/16
      Vol:
    E99-D No:3
      Page(s):
    567-574

    We consider a problem as follows: Given unit weights arriving in an online manner with the total cardinality unknown, upon each arrival we decide where to place it on the unit circle in $mathbb{R}^{2}$. The objective is to set the center of mass of the placed weights as close to the origin as possible. We apply competitive analysis defining the competitive difference as a performance measure. We first present an optimal strategy for placing unit weights which achieves a competitive difference of $ rac{1}{5}$. We next consider a variant in which the destination of each weight must be chosen from a set of positions that equally divide the unit circle. We give a simple strategy whose competitive difference is 0.35. Moreover, in the offline setting, several conditions for the center of mass to lie at the origin are derived.

  • Competitive Analysis for the Flat-Rate Problem

    Hiroshi FUJIWARA  Atsushi MATSUDA  Toshihiro FUJITO  

     
    PAPER

      Pubricized:
    2015/12/16
      Vol:
    E99-D No:3
      Page(s):
    559-566

    We consider a problem of the choice of price plans offered by a telecommunications company: a “pay-as-you-go” plan and a “flat-rate” plan. This problem is formulated as an online optimization problem extending the ski-rental problem, and analyzed using the competitive ratio. We give a lemma for easily calculating the competitive ratio. Based on the lemma, we derive a family of optimal strategies for a realistic class of instances.

  • Analysis of Lower Bounds for the Multislope Ski-Rental Problem

    Hiroshi FUJIWARA  Yasuhiro KONNO  Toshihiro FUJITO  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1200-1205

    The multislope ski-rental problem is an extension of the classical ski-rental problem, where the player has several options of paying both of a per-time fee and an initial fee, in addition to pure renting and buying options. Damaschke gave a lower bound of 3.62 on the competitive ratio for the case where arbitrary number of options can be offered. In this paper we propose a scheme that for the number of options given as an input, provides a lower bound on the competitive ratio, by extending the method of Damaschke. This is the first to establish a lower bound for each of the 5-or-more-option cases, for example, a lower bound of 2.95 for the 5-option case, 3.08 for the 6-option case, and 3.18 for the 7-option case. Moreover, it turns out that our lower bounds for the 3- and 4-option cases respectively coincide with the known upper bounds. We therefore conjecture that our scheme in general derives a matching lower and upper bound.

  • Online Vertex Exploration Problems in a Simple Polygon

    Yuya HIGASHIKAWA  Naoki KATOH  

     
    PAPER

      Vol:
    E96-D No:3
      Page(s):
    489-497

    This paper considers online vertex exploration problems in a simple polygon where starting from a point in the inside of a simple polygon, a searcher is required to explore a simple polygon to visit all its vertices and finally return to the initial position as quickly as possible. The information of the polygon is given online. As the exploration proceeds, the searcher gains more information of the polygon. We give a 1.219-competitive algorithm for this problem. We also study the case of a rectilinear simple polygon, and give a 1.167-competitive algorithm.

  • Optimal Online and Offline Algorithms for Finding Longest and Shortest Subsequences with Length and Sum Constraints

    Sung Kwon KIM  

     
    PAPER

      Vol:
    E93-D No:2
      Page(s):
    250-256

    In this paper, we address the following problems: Given a sequence A of n real numbers, and four parameters I,J,X and Y with I≤ J and X≤ Y, find the longest (or shortest) subsequence of A such that its length is between I and J and its sum is between X and Y. We present an online and an offline algorithm for the problems, both run in O(nlog n) time, which are optimal.

  • Randomized Online File Allocation on Uniform Cactus Graphs

    Yasuyuki KAWAMURA  Akira MATSUBAYASHI  

     
    PAPER-Algorithm Theory

      Vol:
    E92-D No:12
      Page(s):
    2416-2421

    We study the online file allocation problem on ring networks. In this paper, we present a 7-competitive randomized algorithm against an adaptive online adversary on uniform cactus graphs. The algorithm is deterministic if the file size is 1. Moreover, we obtain lower bounds of 4.25 and 3.833 for a deterministic algorithm and a randomized algorithm against an adaptive online adversary, respectively, on ring networks.

  • The Online Graph Exploration Problem on Restricted Graphs

    Shuichi MIYAZAKI  Naoyuki MORIMOTO  Yasuo OKABE  

     
    PAPER-Algorithm Theory

      Vol:
    E92-D No:9
      Page(s):
    1620-1627

    The purpose of the online graph exploration problem is to visit all the nodes of a given graph and come back to the starting node with the minimum total traverse cost. However, unlike the classical Traveling Salesperson Problem, information of the graph is given online. When an online algorithm (called a searcher) visits a node v, then it learns information on nodes and edges adjacent to v. The searcher must decide which node to visit next depending on partial and incomplete information of the graph that it has gained in its searching process. The goodness of the algorithm is evaluated by the competitive analysis. If input graphs to be explored are restricted to trees, the depth-first search always returns an optimal tour. However, if graphs have cycles, the problem is non-trivial. In this paper we consider two simple cases. First, we treat the problem on simple cycles. Recently, Asahiro et al. proved that there is a 1.5-competitive online algorithm, while no online algorithm can be (1.25-ε)-competitive for any positive constant ε. In this paper, we give an optimal online algorithm for this problem; namely, we give a (1.366)-competitive algorithm, and prove that there is no (-ε)-competitive algorithm for any positive constant ε. Furthermore, we consider the problem on unweighted graphs. We also give an optimal result; namely we give a 2-competitive algorithm and prove that there is no (2-ε)-competitive online algorithm for any positive constant ε.

  • Semi-Dynamic Multiprocessor Scheduling with an Asymptotically Optimal Performance Ratio

    Satoshi FUJITA  

     
    PAPER-Theory

      Vol:
    E92-A No:8
      Page(s):
    1764-1770

    In this paper, we consider a problem of assigning n independent tasks onto m identical processors in such a way that the overall execution time of the tasks will be minimized. Unlike conventional task assignment problem, we assume that the execution time of each task is not fixed in advance, and merely upper and lower bounds of the execution time are given at the compile time. In the following, we first provide a theoretical analysis of several conventional scheduling policies in terms of the worst case slowdown compared with the outcome of an optimal off-line scheduling policy. It is shown that the best known algorithm in the literature achieves a worst case performance ratio of 1 + 1/f(n) where f(n) = O(n2/3) for any fixed m, which approaches to one by increasing n to the infinity. We then propose a new scheme that achieves better worst case ratio of 1 + 1/g(n) where g(n) = Θ (n/log n) for any fixed m, which approaches to one more quickly than previous schemes.

  • Finding Frequent Closed Itemsets in Sliding Window in Linear Time

    Junbo CHEN  Bo ZHOU  Lu CHEN  Xinyu WANG  Yiqun DING  

     
    PAPER-Data Mining

      Vol:
    E91-D No:10
      Page(s):
    2406-2418

    One of the most well-studied problems in data mining is computing the collection of frequent itemsets in large transactional databases. Since the introduction of the famous Apriori algorithm [14], many others have been proposed to find the frequent itemsets. Among such algorithms, the approach of mining closed itemsets has raised much interest in data mining community. The algorithms taking this approach include TITANIC [8], CLOSET+ [6], DCI-Closed [4], FCI-Stream [3], GC-Tree [5], TGC-Tree [16] etc. Among these algorithms, FCI-Stream, GC-Tree and TGC-Tree are online algorithms work under sliding window environments. By the performance evaluation in [16], GC-Tree [15] is the fastest one. In this paper, an improved algorithm based on GC-Tree is proposed, the computational complexity of which is proved to be a linear combination of the average transaction size and the average closed itemset size. The algorithm is based on the essential theorem presented in Sect. 4.2. Empirically, the new algorithm is several orders of magnitude faster than the state of art algorithm, GC-Tree.

  • Energy Efficient Online Routing Algorithm for QoS-Sensitive Sensor Networks

    Sungwook KIM  Sungyong PARK  Sooyong PARK  Sungchun KIM  

     
    LETTER-Network

      Vol:
    E91-B No:7
      Page(s):
    2401-2404

    In this letter, we propose a new energy efficient online routing algorithm for QoS-sensitive sensor networks. An important design principle underlying our algorithm is online decision making based on real time network estimation. This on-line approach gives adaptability and flexibility to solve a wide range of control tasks for efficient network performance. In addition, our distributed control paradigm is practical for real sensor network management. Simulation results indicate the superior performance of our algorithm between energy efficiency and QoS provisioning.

1-20hit(23hit)