The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] outage(117hit)

61-80hit(117hit)

  • Diversity Combination in Multiuser Decode-and-Forward Cooperation with Multiple Shared Relays

    Yubo LI  Qinye YIN  Junsong WANG  Weile ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1491-1494

    In this letter, a multiuser cooperative network with multiple relays is introduced, and two decode-and-forward (DF) cooperation schemes are proposed aiming at outage-optimal and fair user scheduling, respectively. The outage probability and asymptotic expressions of symbol error probability (SEP) are derived to evaluate these two schemes. Analysis and simulations show that both schemes can achieve full diversity order, which is the combination of cooperative diversity and multiuser diversity.

  • Iterative Transmit/Receive Antenna Selection in MIMO Systems Based on Channel Capacity Analysis

    Peng LAN  Ju LIU  Fenggang SUN  Peng XUE  

    This paper was canceled on August 6, 2013 because it was found to be a duplicate submission (see details in the pdf file).
     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:3
      Page(s):
    844-847

    This letter introduces a closed form expression for the channel capacity increase achieved by adding a new pair of transmit and receive antennas. By analyzing this expression, an iterative transmit/receive antenna selection algorithm of low computational complexity is proposed. The new algorithm has higher computational complexity than some existing algorithms, but as the results show, the performance improvement of the proposed algorithm approaching more to the optimal algorithm.

  • Performance Analysis for Multi-Antenna Relay Networks with Limited Feedback Beamforming

    Zhen LIU  Xiaoxiang WANG  Hongtao ZHANG  Zhenfeng SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:2
      Page(s):
    603-606

    In this letter, we study the performance of multi-antenna relay networks with limited feedback beamforming in decode-and-forward (DF) relaying. Closed-form expression for both outage probability and symbol error rate are derived by using the moment generation function (MGF) of the combined signal-to-noise ratio (SNR) at the destination. Subjected to a total power constraint, we also explore adaptive power allocation between source and relay to optimize the performance. Simulations are given to verify the correctness of our theoretical derivations. Results show that the proposed adaptive power allocation solution significantly outperforms the uniform power allocation method.

  • Performance Analysis of Opportunistic-Based Two-Way Relaying with Beamforming over Nakagami-m Fading Channels

    Jianxiong HUANG  Taiyi ZHANG  Runping YUAN  Jing ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    359-363

    In this letter, the performance of opportunistic-based two-way relaying with beamforming over Nakagami-m fading channels is investigated. We provide an approximate expression for the cumulative distribution function of the end-to-end signal-to-noise ratio to derive the closed-form lower bounds for the outage probability and average bit error probability as well as the closed-form upper bound for the ergodic capacity. Simulation results demonstrate the tightness of the derived bounds.

  • Two Relay-Stage Selection Cooperation in Wireless Networks and Why More than Two Is Not Necessary

    Xingyang CHEN  Lin ZHANG  Yuhan DONG  Xiuming SHAN  Yong REN  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3332-3344

    The selection cooperation is a basic and attractive scheme of cooperative diversity in the multiple relays scenario. Most previous schemes of selection cooperation consist only one relay-stage in which one relay is selected to retransmit, and the signal from the selected relay is not utilized by other relays. In this paper, we introduce a two relay-stage selection cooperation scheme. The performance can be improved by letting all other relays to utilize the signal from the first selected relay to make another selection and retransmission in the second relay-stage. We derive the closed-form expression of the outage probability of the proposed scheme in the high SNR regime. Both theoretical and numerical results suggest that the proposed scheme can reduce the outage probability compared with the traditional scheme with only one relay-stage. Furthermore, we demonstrate that more than two relay-stage can not further reduce the outage probability. We also study the dependence of the proposed scheme on stage lengths and topology, and analyze the increased overhead.

  • Outage Performance of Decode-and-Forward Relay Systems Using Imperfect MRC Receiver over Nakagami-m Fading Channels

    Weiwei YANG  Yueming CAI  Lei WANG  

     
    LETTER

      Vol:
    E93-D No:12
      Page(s):
    3273-3275

    In this letter, we analyze the outage performance of decode-and-forward relay systems with imperfect MRC receiver at the destination. Unlike the conventional perfect MRC, the weight of each branch of the imperfect MRC receiver is only the conjugate of the channel impulse response, not being normalized by the noise variance. We derive an exact closed-form expression for the outage probability over dissimilar Nakagami-m fading channels. Various numerical examples confirm the proposed analysis.

  • Performance Analysis of Alamouti Scheme in Time-Varying and Spatially Correlated Channels

    Eunju LEE  Jaedon PARK  Giwan YOON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2804-2807

    In this paper, we analyze the performance of the 21 Alamouti scheme suggested by Alamouti, composed of the transmit space-time code and the simple linear decoding processing, in perfectly time-varying and spatially correlated channels. We derive the closed-form probability density function (PDF) of output signal-to-noise ratio (SNR) and outage probability of the Alamouti scheme as a function of spatial correlation coefficient in the consideration of no correlation in time. We observe that the performance of the Alamouti scheme is severely degraded when the channels are time-varying and spatially correlated.

  • Opportunistic Cooperative Communications over Nakagami-m Fading Channels

    Runping YUAN  Taiyi ZHANG  Jing ZHANG  Jianxiong HUANG  Zhenjie FENG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2812-2816

    In this letter, a dual-hop wireless communication network with opportunistic amplify and forward (O-AF) relay is investigated over independent and non-identically distributed Nakagami-m fading channels. Employing Maclaurin series expansion around zero to derive the approximate probability density function of the normalized instantaneous signal-to-noise ratio (SNR), the asymptotic symbol error rate (SER) and outage probability expressions are presented. Simulation results indicate that the derived expressions well match the results of Monte-Carlo simulations at medium and high SNR regions. By comparing the O-AF with all AF relaying analyzed previously, it can be concluded that the former has significantly better performance than the latter in many cases.

  • Analysis of QoS-Based Band Power Allocation for Broadband Multi-Cell Forward Link Environments

    Hyukmin SON  Sanghoon LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:7
      Page(s):
    1953-1956

    ICI (Inter-Cell Interference) mitigation schemes at the cell border are frequently dealt with as a special issue in 3GPP LTE (Long Term Evolution). However, few papers have analyzed the outage performance for the ICI mitigation schemes. In this paper, we propose a generalized cell planning scheme termed QBPA (Quality of Service based Band Power Allocation). Utilizing the QBPA scheme, we measure how much increase in channel capacity can be obtained through the flexible control of bandwidth and power in multi-cell forward-link environments. In addition, the feasible performance of the conventional schemes can be evaluated as long as those schemes are specific forms of the QBPA.

  • Outage Performance of Multi-Hop Decouple-and-Forward Relaying in Spatially Correlated MIMO Channels

    In-Ho LEE  Joong-Hoo PARK  Dongwoo KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:5
      Page(s):
    1298-1301

    In this letter, the outage performance of multi-hop multiple-input multiple-output (MIMO) relaying systems is analyzed for spatially correlated Rayleigh fading channels. We focus on nonregenerative MIMO decouple-and-forward (DCF) relaying in orthogonal space-time block code (OSTBC) transmission and provide its outage probability given the assumption of ideal relay gain. The outage obtained here is shown a lower bound for using practical gains, which gets tight at high SNR. We conduct numerical studies to assess the impact of the spatial correlation between antennas on the outage probability.

  • Capacity and Outage Rate of OFDMA Cellular System with Fractional Frequency Reuse

    Hiromasa FUJII  Hitoshi YOSHINO  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E93-B No:3
      Page(s):
    670-678

    Employing fractional frequency reuse (FFR) in OFDMA cellular systems is very attractive since it offers large capacity and single cell frequency reuse. However, its performance in practical environments, e.g. scheduling and arbitrary cell configurations, has not been well revealed. This paper analyzes the theoretical capacity and outage rate of an OFDMA cellular system employing FFR. Numerical examples show that FFR achieves higher capacity than the non-FFR equivalent when the outage rate is low.

  • A Novel Cooperative-Aided Transmission in Multi-Hop Wireless Networks

    Tran Trung DUY  Beongku AN  Hyung-Yun KONG  

     
    LETTER-Network

      Vol:
    E93-B No:3
      Page(s):
    716-720

    Cooperative transmission protocols attract a great deal of attention in recent years as an efficient way to increase the capacity of multi-hop wireless networks in fading environments. In this paper, we propose and analyze a cooperative transmission method, called Cooperative-Aided Skipping multi-Hop protocol (CASH), for multi-hop wireless networks with Rayleigh fading environments. For performance evaluation, we compare and verify the results of the theoretical analysis with the results of simulations.

  • Outage Capacity Analysis of TAS/MRC Systems over Arbitrary Nakagami-m Fading Channels

    Chia-Chun HUNG  Ching-Tai CHIANG  Shyh-Neng LIN  Rong-Ching WU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    215-218

    A simple closed-form approximation for the outage capacity of Transmit Antenna Selection/Maximal-Ratio Combining (TAS/MRC) systems over independent and identically distributed (i.i.d) Nakagami-m fading channels is derived while the fading index is a positive integer. When the Nakagami-m fading index is not an integer, the approximate outage capacity is derived as a single infinite series of Gamma function. Computer simulations verify the accuracy of the approximate results.

  • On the Performance of Two-Way Amplify-and-Forward Relay Networks

    Trung Quang DUONG  Le-Nam HOANG  Vo Nguyen Quoc BAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3957-3959

    The performance of two-way amplify-and-forward (AF) relay networks is presented. In particular, we derive exact closed-form expressions for symbol error rate (SER), average sum-rate, and outage probability of two-way AF relay systems in independent but not identically distributed (i.n.i.d.) Rayleigh fading channels. Our analysis is validated by a comparison against the results of Monte-Carlo simulations.

  • Performance Comparison between Two- and Three-Phase Coded Bi-directional Relaying Protocols

    Jung-Bin KIM  Dongwoo KIM  

     
    LETTER-Broadcast Systems

      Vol:
    E92-B No:11
      Page(s):
    3564-3567

    Recently proposed coded bi-directional relaying protocols increase the spectral efficiency by using network codes, which rely on joint packet encoding and exploitation of previously transmitted and stored information. In this letter, we derive the cumulative density function (CDF) and the probability density function (PDF) of received signal-to-noise ratios (SNRs) for two-phase and three-phase bi-directional coded relaying protocols, respectively, over Rayleigh fading channels. Using these results, we compare the outage performances as well as the average capacities of the protocols. From the numerical observations, we can see that the two-phase protocol has better link-level performances than the three-phase protocol when required data rate is greater than 2 for outate performance and transmit SNR at each node is greater than 18 dB for average capacity, respectively. Otherwise, the three-phase protocol performs better.

  • Power Allocation for Amplify-and-Forward Opportunistic Relaying Systems

    Hui HUI  Shihua ZHU  Gangming LV  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:11
      Page(s):
    3541-3545

    In this letter, power allocation methods are devised for Amplify-and-Forward (AF) opportunistic relaying systems aiming at minimizing the outage probability. First, we extend the result on outage probability in and develop an approximate expression to simplify the power allocation problem. A corresponding optimization problem is constructed and proved to be convex. Then an iterative numerical method is proposed to find the optimal power allocation factor. We also propose a near-optimal method which can directly calculate the power allocation factor to reduce computational complexity. Numerical results show that the proposed methods have a similar performance with the ideal one, and outperform equal power allocation significantly with little overhead.

  • On the Optimal Transmission in Multihop Relay Networks over Rayleigh Fading Channels

    Guobing LI  Shihua ZHU  Hui HUI  Yongliang GUO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2341-2344

    In this letter we investigate the relaying strategies for multihop transmission in wireless networks over Rayleigh fading channels. Theoretical analysis reveals that equally allocating power among all transmitters and placing relays equidistantly on the line between source and destination are optimal in terms of outage capacity. Then equal time duration for the transmission of each hop is also proved to be optimal. Furthermore, the optimum number of hops is also derived and shown to be inversely proportional to the signal-to-noise ratio (SNR). Numerical simulations agree well with the reported theoretical results.

  • Multi-Cell MIMO Cooperation for OFDM-Based Broadcast Services and Its Outage Probability

    Nurilla AVAZOV  Yun Hee KIM  Iickho SONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:3
      Page(s):
    1039-1042

    In this letter, we propose a multi-cell cooperation method for broadcast packet transmission in the OFDM-based cellular system with multiple transmit antennas. In the proposed method, to transmit two streams of spatially demultiplexed or transmit diversity coded symbols, we divide a coded packet into subparts to each of which different cell group and antenna pairs are assigned. It is shown that the proposed method reduces the outage probability with only negligible increase in channel estimation.

  • Hybrid Model for Cascading Outage in a Power System: A Numerical Study

    Yoshihiko SUSUKI  Yu TAKATSUJI  Takashi HIKIHARA  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:3
      Page(s):
    871-879

    Analysis of cascading outages in power systems is important for understanding why large blackouts emerge and how to prevent them. Cascading outages are complex dynamics of power systems, and one cause of them is the interaction between swing dynamics of synchronous machines and protection operation of relays and circuit breakers. This paper uses hybrid dynamical systems as a mathematical model for cascading outages caused by the interaction. Hybrid dynamical systems can combine families of flows describing swing dynamics with switching rules that are based on protection operation. This paper refers to data on a cascading outage in the September 2003 blackout in Italy and shows a hybrid dynamical system by which propagation of outages reproduced is consistent with the data. This result suggests that hybrid dynamical systems can provide an effective model for the analysis of cascading outages in power systems.

  • Performance of Digital Modulation in Double Nakagami-m Fading Channels with MRC Diversity

    Wannaree WONGTRAIRAT  Pornchai SUPNITHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:2
      Page(s):
    559-566

    In this paper, we derive the average bit error probability (BEP) for common digital modulation schemes and the outage probability of double Nakagami-m channels with MRC diversity. First, the probability density function (PDF) and moment generating function (MGF) of received signal with maximal ratio combining (MRC) receiver diversity are computed. The derived MGF results are simplified in terms of a generalized hypergeometric function 2F0. The derived BEP expressions find applications in existing wireless systems such as satellite mobile communication system, mobile-to-mobile communication system and multiple-input multiple-output (MIMO) wireless communication system. In addition, the obtained general MGF expression considers combined Rayleigh Nakagami-m, double Rayleigh, single Rayleigh, single Nakagami-m, and non-fading or additive white Gaussian noise (AWGN) channels as special cases. The simulation results agree well with the theoretical results.

61-80hit(117hit)