Jurong BAI Lin LAN Zhaoyang SONG Huimin DU
The orthogonal time frequency space (OTFS) technique proposed in recent years has excellent anti-Doppler frequency shift and time delay performance, enabling its application in high speed communication scenarios. In this article, a particle swarm optimization (PSO) signal detection algorithm for OTFS system is proposed, an adaptive mechanism for the individual learning factor and global learning factor in the speed formula of the algorithm is designed, and the position update method of the particles is improved, so as to increase the convergence accuracy and avoid the particles to fall into local optimum. The simulation results show that the improved PSO algorithm has the advantages of low bit error rate (BER) and high convergence accuracy compared with the traditional PSO algorithm, and has similar performance to the ideal state maximum likelihood (ML) detection algorithm with lower complexity. In the case of high Doppler shift, OTFS technology has better performance than orthogonal frequency division multiplexing (OFDM) technology by using improved PSO algorithm.
Yi LIU Wei QIN Qibin ZHENG Gensong LI Mengmeng LI
Feature selection based on particle swarm optimization is often employed for promoting the performance of artificial intelligence algorithms. However, its interpretability has been lacking of concrete research. Improving the stability of the feature selection method is a way to effectively improve its interpretability. A novel feature selection approach named Interpretable Particle Swarm Optimization is developed in this paper. It uses four data perturbation ways and three filter feature selection methods to obtain stable feature subsets, and adopts Fuch map to convert them to initial particles. Besides, it employs similarity mutation strategy, which applies Tanimoto distance to choose the nearest 1/3 individuals to the previous particles to implement mutation. Eleven representative algorithms and four typical datasets are taken to make a comprehensive comparison with our proposed approach. Accuracy, F1, precision and recall rate indicators are used as classification measures, and extension of Kuncheva indicator is employed as the stability measure. Experiments show that our method has a better interpretability than the compared evolutionary algorithms. Furthermore, the results of classification measures demonstrate that the proposed approach has an excellent comprehensive classification performance.
Hongwei YANG Fucheng XUE Dan LIU Li LI Jiahui FENG
Service composition optimization is a classic NP-hard problem. How to quickly select high-quality services that meet user needs from a large number of candidate services is a hot topic in cloud service composition research. An efficient second-order beetle swarm optimization is proposed with a global search ability to solve the problem of cloud service composition optimization in this study. First, the beetle antennae search algorithm is introduced into the modified particle swarm optimization algorithm, initialize the population bying using a chaotic sequence, and the modified nonlinear dynamic trigonometric learning factors are adopted to control the expanding capacity of particles and global convergence capability. Second, modified secondary oscillation factors are incorporated, increasing the search precision of the algorithm and global searching ability. An adaptive step adjustment is utilized to improve the stability of the algorithm. Experimental results founded on a real data set indicated that the proposed global optimization algorithm can solve web service composition optimization problems in a cloud environment. It exhibits excellent global searching ability, has comparatively fast convergence speed, favorable stability, and requires less time cost.
Zhaoyang HOU Zheng XIANG Peng REN Qiang HE Ling ZHENG
In this paper, the distributed cooperative communication of unmanned aerial vehicles (UAVs) is studied, where the condition number (CN) and the inner product (InP) are used to measure the quality of communication links. By optimizing the relative position of UAVs, large channel capacity and stable communication links can be obtained. Using the spherical wave model under the line of sight (LOS) channel, CN expression of the channel matrix is derived when there are Nt transmitters and two receivers in the system. In order to maximize channel capacity, we derive the UAVs position constraint equation (UAVs-PCE), and the constraint between BS elements distance and carrier wavelength is analyzed. The result shows there is an area where no matter how the UAVs' positions are adjusted, the CN is still very large. Then a special scenario is considered where UAVs form a rectangular lattice array, and the optimal constraint between communication distance and UAVs distance is derived. After that, we derive the InP of channel matrix and the gradient expression of InP with respect to UAVs' position. The particle swarm optimization (PSO) algorithm is used to minimize the CN and the gradient descent (GD) algorithm is used to minimize the InP by optimizing UAVs' position iteratively. Both of the two algorithms present great potentials for optimizing the CN and InP respectively. Furthermore, a hybrid algorithm named PSO-GD combining the advantage of the two algorithms is proposed to maximize the communication capacity with lower complexity. Simulations show that PSO-GD is more efficient than PSO and GD. PSO helps GD to break away from local extremum and provides better positions for GD, and GD can converge to an optimal solution quickly by using the gradient information based on the better positions. Simulations also reveal that a better channel can be obtained when those parameters satisfy the UAVs position constraint equation (UAVs-PCE), meanwhile, theory analysis also explains the abnormal phenomena in simulations.
Farzin MATIN Yoosoo JEONG Hanhoon PARK
Multiscale retinex is one of the most popular image enhancement methods. However, its control parameters, such as Gaussian kernel sizes, gain, and offset, should be tuned carefully according to the image contents. In this letter, we propose a new method that optimizes the parameters using practical swarm optimization and multi-objective function. The method iteratively verifies the visual quality (i.e. brightness, contrast, and colorfulness) of the enhanced image using a multi-objective function while subtly adjusting the parameters. Experimental results shows that the proposed method achieves better image quality qualitatively and quantitatively compared with other image enhancement methods.
Survivable virtual network embedding (SVNE) is one of major challenges of network virtualization. In order to improve the utilization rate of the substrate network (SN) resources with virtual network (VN) topology connectivity guarantee under link failure in SN, we first establishes an Integer Linear Programming (ILP) model for that under SN supports path splitting. Then we designs a novel survivable VN topology protection method based on particle swarm optimization (VNE-PSO), which redefines the parameters and related operations of particles with the embedding overhead as the fitness function. Simulation results show that the solution significantly improves the long-term average revenue of the SN, the acceptance rate of VN requests, and reduces the embedding time compared with the existing research results.
Tomoyuki SASAKI Hidehiro NAKANO
Particle swarm optimization (PSO) is a swarm intelligence algorithm and has good search performance and simplicity in implementation. Because of its properties, PSO has been applied to various optimization problems. However, the search performance of the classical PSO (CPSO) depends on reference frame of solution spaces for each objective function. CPSO is an invariant algorithm through translation and scale changes to reference frame of solution spaces but is a rotationally variant algorithm. As such, the search performance of CPSO is worse in solving rotated problems than in solving non-rotated problems. In the reference frame invariance, the search performance of an optimization algorithm is independent on rotation, translation, or scale changes to reference frame of solution spaces, which is a property of preferred optimization algorithms. In our previous study, piecewise-linear particle swarm optimizer (PPSO) has been proposed, which is effective in solving rotated problems. Because PPSO particles can move in solution spaces freely without depending on the coordinate systems, PPSO algorithm may have rotational invariance. However, theoretical analysis of reference frame invariance of PPSO has not been done. In addition, although behavior of each particle depends on PPSO parameters, good parameter conditions in solving various optimization problems have not been sufficiently clarified. In this paper, we analyze the reference frame invariance of PPSO theoretically, and investigated whether or not PPSO is invariant under reference frame alteration. We clarify that control parameters of PPSO which affect movement of each particle and performance of PPSO through numerical simulations.
Tuan Linh DANG Yukinobu HOSHINO
This paper presents a hybrid architecture for a neural network (NN) trained by a particle swarm optimization (PSO) algorithm. The NN is implemented on the hardware side while the PSO is executed by a processor on the software side. In addition, principal component analysis (PCA) is also applied to reduce correlated information. The PCA module is implemented in hardware by the SystemVerilog programming language to increase operating speed. Experimental results showed that the proposed architecture had been successfully implemented. In addition, the hardware-based NN trained by PSO (NN-PSO) program was faster than the software-based NN trained by the PSO program. The proposed NN-PSO with PCA also obtained better recognition rates than the NN-PSO without-PCA.
Ling YANG Yuanqi FU Zhongke WANG Xiaoqiong ZHEN Zhipeng YANG Xingang FAN
A new fuzzy level set method (FLSM) based on the global search capability of quantum particle swarm optimization (QPSO) is proposed to improve the stability and precision of image segmentation, and reduce the sensitivity of initialization. The new combination of QPSO-FLSM algorithm iteratively optimizes initial contours using the QPSO method and fuzzy c-means clustering, and then utilizes level set method (LSM) to segment images. The new algorithm exploits the global search capability of QPSO to obtain a stable cluster center and a pre-segmentation contour closer to the region of interest during the iteration. In the implementation of the new method in segmenting liver tumors, brain tissues, and lightning images, the fitness function of the objective function of QPSO-FLSM algorithm is optimized by 10% in comparison to the original FLSM algorithm. The achieved initial contours from the QPSO-FLSM algorithm are also more stable than that from the FLSM. The QPSO-FLSM resulted in improved final image segmentation.
Jidong QIN Jiandong ZHU Huafeng PENG Tao SUN Dexiu HU
The existing methods to estimate satellite attitude by using radar cross section (RCS) sequence suffer from problems such as low precision, computation complexity, etc. To overcome these problems, a novel model of satellite attitude estimation by the local maximum points of the RCS sequence is established and can reduce the computational time by downscaling the dimension of the feature vector. Moreover, a particle swarm optimization method is adopted to improve efficiency of computation. Numerical simulations show that the proposed method is robust and efficient.
Kazuyuki ISHIKAWA Naoki HAYASHI Shigemasa TAKAI
This paper proposes a consensus-based distributed Particle Swarm Optimization (PSO) algorithm with event-triggered communications for a non-convex and non-differentiable optimization problem. We consider a multi-agent system whose local communications among agents are represented by a fixed and connected graph. Each agent has multiple particles as estimated solutions of global optima and updates positions of particles by an average consensus dynamics on an auxiliary variable that accumulates the past information of the own objective function. In contrast to the existing time-triggered approach, the local communications are carried out only when the difference between the current auxiliary variable and the variable at the last communication exceeds a threshold. We show that the global best can be estimated in a distributed way by the proposed event-triggered PSO algorithm under a diminishing condition of the threshold for the trigger condition.
Guoliang LI Lining XING Zhongshan ZHANG Yingwu CHEN
Bayesian networks are a powerful approach for representation and reasoning under conditions of uncertainty. Of the many good algorithms for learning Bayesian networks from data, the bio-inspired search algorithm is one of the most effective. In this paper, we propose a hybrid mutual information-modified binary particle swarm optimization (MI-MBPSO) algorithm. This technique first constructs a network based on MI to improve the quality of the initial population, and then uses the decomposability of the scoring function to modify the BPSO algorithm. Experimental results show that, the proposed hybrid algorithm outperforms various other state-of-the-art structure learning algorithms.
Xibin WANG Fengji LUO Chunyan SANG Jun ZENG Sachio HIROKAWA
With the rapid development of information and Web technologies, people are facing ‘information overload’ in their daily lives. The personalized recommendation system (PRS) is an effective tool to assist users extract meaningful information from the big data. Collaborative filtering (CF) is one of the most widely used personalized recommendation techniques to recommend the personalized products for users. However, the conventional CF technique has some limitations, such as the low accuracy of of similarity calculation, cold start problem, etc. In this paper, a PRS model based on the Support Vector Machine (SVM) is proposed. The proposed model not only considers the items' content information, but also the users' demographic and behavior information to fully capture the users' interests and preferences. An improved Particle Swarm Optimization (PSO) algorithm is also proposed to improve the performance of the model. The efficiency of the proposed method is verified by multiple benchmark datasets.
Recently, the Static Heterogeneous Particle Swarm Optimization (SHPSO) has been studied by more and more researchers. In SHPSO, the different search behaviours assigned to particles during initialization do not change during the search process. As a consequence of this, the inappropriate population size of exploratory particles could leave the SHPSO with great difficulties of escaping local optima. This motivated our attempt to improve the performance of SHPSO by introducing the dynamic heterogeneity. The self-adaptive heterogeneity is able to alter its heterogeneous structure according to some events caused by the behaviour of the swarm. The proposed triggering events are confirmed by keeping track of the frequency of the unchanged global best position (pg) for a number of iterations. This information is then used to select a new heterogeneous structure when pg is considered stagnant. According to the different types of heterogeneity, DHPSO-d and DHPSO-p are proposed in this paper. In, particles dynamically use different rules for updating their position when the triggering events are confirmed. In DHPSO-p, a global gbest model and a pairwise connection model are automatically selected by the triggering configuration. In order to investigate the scalability of and DHPSO-p, a series of experiments with four state-of-the-art algorithms are performed on ten well-known optimization problems. The scalability analysis of and DHPSO-p reveals that the dynamic self-adaptive heterogeneous structure is able to address the exploration-exploitation trade-off problem in PSO, and provide the excellent optimal solution of a problem simultaneously.
Nannan QIAO Jiali YOU Yiqiang SHENG Jinlin WANG Haojiang DENG
In this paper, a discrete particle swarm optimization method is proposed to solve the multi-objective task assignment problem in distributed environment. The objectives of optimization include the makespan for task execution and the budget caused by resource occupation. A two-stage approach is designed as follows. In the first stage, several artificial particles are added into the initialized swarm to guide the search direction. In the second stage, we redefine the operators of the discrete PSO to implement addition, subtraction and multiplication. Besides, a fuzzy-cost-based elite selection is used to improve the computational efficiency. Evaluation shows that the proposed algorithm achieves Pareto improvement in comparison to the state-of-the-art algorithms.
In this paper, we study a novel method to avoid a local minimum stagnation in the design problem of IIR (Infinite Impulse Response) filters using PSO (Particle Swarm Optimization). Although PSO is appropriate to solve nonlinear optimization problems, it is reported that a local minimum stagnation occurs due to a strong intensification of particles during the search. Then, multi-swarm PSO based on the particle reallocation strategy is proposed to avoid the local minimum stagnation. In this method, a reallocation space is determined by using some global bests. In this paper, the relationship between the number of swarms and the best value of design error is shown and the effectiveness of the proposed method is shown through several design examples.
Ann-Chen CHANG Chih-Chang SHEN
In this letter, standard particle swarm optimization (PSO) with the center-symmetric trimmed correlation matrix and the orthogonal projection technique is firstly presented for blind carrier frequency offset estimation under interleaved orthogonal frequency division multiple access (OFDMA) uplink systems. It doesn't require eigenvalue decomposition and only needs a single OFDMA data block. Second, this letter also presents adaptive multiple inertia weights with Newton method to speed up the convergence of standard PSO iteration process. Meanwhile, the advantage of inherent interleaved OFDMA signal structure also is exploited to conquer the problems of local optimization and the effect of ambiguous peaks for the proposed approaches. Finally, several simulation results are provided for illustration and comparison.
Wa SI Xun PAN Harutoshi OGAI Katsumi HIRAI
In most existing centralized lighting control systems, the lighting control problem (LCP) is reformulated as a constrained minimization problem and solved by linear programming (LP). However, in real-world applications, LCP is actually discrete and non-linear, which means that more accurate algorithm may be applied to achieve improvements in energy saving. In this paper, particle swarm optimization (PSO) is successfully applied for office lighting control and a linear programming guided particle swarm optimization (LPPSO) algorithm is developed to achieve considerable energy saving while satisfying users' lighting preference. Simulations in DIALux office models (one with small number of lamps and one with large number of lamps) are made and analyzed using the proposed control algorithms. Comparison with other widely used methods including LP shows that LPPSO can always achieve higher energy saving than other lighting control methods.
The inertia weight is the control parameter that tunes the balance between the exploration and exploitation movements in particle swarm optimization searches. Since the introduction of inertia weight, various strategies have been proposed for determining the appropriate inertia weight value. This paper presents a brief review of the various types of inertia weight strategies which are classified and discussed in four categories: static, time varying, dynamic, and adaptive. Furthermore, a novel entropy-based gain regulator (EGR) is proposed to detect the evolutionary state of particle swarm optimization in terms of the distances from particles to the current global best. And then apply proper inertia weights with respect to the corresponding distinct states. Experimental results on five widely applied benchmark functions show that the EGR produced significant improvements of particle swarm optimization.
Vanishing point estimation is an important issue for vision based road detection, especially in unstructured roads. However, most of the existing methods suffer from the long calculating time. This paper focuses on improving the efficiency of vanishing point estimation by using a heuristic voting method based on particle swarm optimization (PSO). Experiments prove that with our proposed method, the efficiency of vanishing point estimation is significantly improved with almost no loss in accuracy. Moreover, for sequenced images, this method is further improved and can get even better performance, by making full use of inter-frame information to optimize the performance of PSO.