Hiroshi SUENOBU Shin-ichi YAMAMOTO Michio TAKIKAWA Naofumi YONEDA
A method for bandwidth enhancement of radar cross section (RCS) reduction by metasurfaces was studied. Scattering cancellation is one of common methods for reducing RCS of target scatterers. It occurs when the wave scattered by the target scatterer and the wave scattered by the canceling scatterer are the same amplitude and opposite phase. Since bandwidth of scattering cancellation is usually narrow, we proposed the bandwidth enhancement method using metasurfaces, which can control the frequency dependence of the scattering phase. We designed and fabricated a metasurface composed of a patch array on a grounded dielectric substrate. Numerical and experimental evaluations confirmed that the metasurface enhances the bandwidth of 10dB RCS reduction by 52% bandwidth ratio of the metasurface from 34% bandwidth ratio of metallic cancelling scatterers.
This paper presents a conformal retrodirective metagrating with multi-azimuthal-angle operating ability. First, a flat metagrating composed of a periodic array of single rectangular patch elements, two-layer stacked substrates, and a ground plane is implemented to achieve one-directional retroreflection at a specific angle. The elevation angle of the retroreflection is manipulated by precisely tuning the value of the period. To control the energy coupling to the retrodirective mode, the dimensions of the length and width of the rectangular patch are investigated under the effect of changing the substrate thickness. Three values of the length, width, and thickness are then chosen to obtain a high retroreflection power efficiency. Next, to create a conformal design operating simultaneously at multiple azimuthal angles, the rectangular patch array using a flexible ultra-thin guiding layer is conformed to a dielectric cylindrical substrate backed by a perfect electric conductor ground plane. Furthermore, to further optimize the retroreflection efficiency, two circular metallic plates are added at the two ends of the cylindrical substrate to eliminate the specular reflection inside the space of the cylinder. The measured radar cross-section shows a power efficiency of the retrodirective metagrating of approximately 91% and 93% for 30° retrodirected elevation angle at the azimuthal angles of 0° and 90°, respectively, at 5.8GHz.
FDTD (Finite-Difference Time-Domain) method has been widely used for the analysis of photonic devices consisting of sub-wavelength structures. In recent years, increasing efforts have been made to implement the FDTD on GPGPUs (General-Purpose Graphic Processing Units), to shorten simulation time. On the other hand, it is widely recognized that most of the middle- and low-end GPGPUs have difference of computational performance, between single-precision and double-precision type arithmetics. Therefore the type selection of single/double precision for electromagnetic field variables in FDTD becomes a key issue from the viewpoint of the total simulation performance. In this study we investigated the difference of results between the use of single-precision and double-precision. As a most fundamental sub-wavelength photonic structure, we focused on an alternating multilayer (one dimensional periodic structure). Obtained results indicate that significant difference appears for the amplitudes of higher order spatial harmonic waves.
In this paper, an electromagnetic plane wave diffraction by finite number of loaded thick slits on infinitely long perfectly electric conductor (PEC) screen is analyzed. Here we formulate the problem by utilizing the Kobayashi Potential (KP) method, which is a kind of eigenfunction expansion method in terns of Weber-Schafheitlin discontinuous integrals. The multiple scattering contributions between the slits are analytically included in the formulation. The solution derived here may provide us with precise numerical result, so it may be considered as a reference solution to other numerical and approximate analyses.
Mitsuhiro YOKOTA Kazumasa MATSUMOTO
The effective permittivity of the two-dimensional multilayered periodic structures which consist of the rectangular dielectric cylinders is examined numerically. The original periodic structure is replaced with a simple structure such as the dielectric slab. By using the reflectance of the periodic structure obtained by the FDTD method, the effective permittivity of the dielectric slab, which has the same reflectance as that of the periodic structure, is obtained by using the transcendental equation. In order to reduce the procedure to obtain the reflectance from the multilayered periodic structures, the reflectance from one-layered structure is used. The range of the application and validity of this procedure is examined.
Metamaterials are generally defined as a class of artificial effective media which macroscopically exhibit extraordinary electromagnetic properties that may not be found in nature, and are composed of periodically structured dielectric, or magnetic, or metallic materials. This paper reviews recently developed electromagnetic modeling methods of metamatericals and their inherent basic ideas, with a focus on full wave numerical techniques. Methods described in this paper are the Method of Moments (MoM) and the Finite Difference Time Domain (FDTD) Method for scattering problems excited by an incident plane wave and a single nonperiodic source, and the Finite Element Method (FEM), the Finite Difference Frequency Domain (FDFD) method and the FDTD method for band diagram calculations.
This paper investigates characteristics of periodic structure of ferrite and dielectric slabs in cutoff waveguide which include left-handed operation. Transmission line model and finite element simulation are used to get dispersion characteristics and scattering parameters. Band pass response of left-handed ferrite mode at negative permeability region are discussed with backward wave phenomenon. Theoretical results show that by choosing appropriate ratio of (1) ferrite width and dielectric width, and (2) ferrite length and dielectric length, band pass response with steep edge characteristics can be obtained by the LH ferrite mode, which are confirmed with experiments using single crystal of yttrium iron garnet ferrite. Good band pass and phase shift responses are observed in S band.
Vakhtang JANDIERI Kiyotoshi YASUMOTO Young-Ki CHO
A semi-analytical approach for analyzing the electromagnetic radiation of a line source in cylindrical electromagnetic bandgap (EBG) structure is presented. The cylindrical structure is composed of circular rods periodically distributed along concentrically layered circular rings. The method uses the T-matrix of a circular rod in isolation, the reflection and transmission matrices of a cylindrical array expressed in terms of the cylindrical waves as the basis, and the generalized reflection and transmission matrices for a layered cylindrical structure. Using the proposed method, the radiated field from a line source placed inside a three-layered cylindrical EBG structure with defects is investigated. The defects are created by removing the particular circular rods from each circular ring. The structure is prominent from the viewpoint of flexible design of the directive antennas. Numerical examples demonstrate that the cylindrical EBG structures are very effective at forming and controlling the directed beam in the radiated fields.
Yuya ONO Takuichi HIRANO Kenichi OKADA Jiro HIROKAWA Makoto ANDO
In this paper we present eigenmode analysis of the propagation constant for a microstrip line with dummy fills on a Si CMOS substrate. The effect of dummy fills is not negligible, particularly in the millimeter-wave band, although it has been ignored below frequencies of a few GHz. The propagation constant of a microstrip line with a periodic structure on a Si CMOS substrate is analyzed by eigenmode analysis for one period of the line. The calculated propagation constant and characteristic impedance were compared with measured values for a chip fabricated by the 0.18 µm CMOS process. The agreement between the analysis and measurement was very good. The dependence of loss on the arrangement of dummy fills was also investigated by eigenmode analysis. It was found that the transmission loss becomes large when dummy fills are arranged at places where the electromagnetic field is strong.
Amin Gul HANIF Yujiro KUSHIYAMA Toru UNO Takuji ARIMA
A band diagram is fundamental for investigating the electromagnetic properties of periodic structures such as photonic and/or electromagnetic crystals and electromagnetic bandgap structures. In this paper, computer resources and the accuracy of the Finite Difference Frequency Domain and the Finite Difference Time Domain methods are studied. The periodic structure treated here consists of two-dimensional dielectric cylinders.
Tetsuya UEDA Shusuke ADACHI Naobumi MICHISHITA Masahiro AKIYAMA Tatsuo ITOH
Multilayered volumetric composite right/left handed metamaterial structures are investigated. The present structure is composed of conducting mesh plates and dielectric layers including dielectric resonators. The 2-D composite right/left handed metamaterial structure is designed for the in-plane propagation. Propagation mode analysis was made for the volumetric structure under the periodic boundary condition along the normal to the layers as well as for finite number of layered type for comparison. The negative-refractive-index planar lenses were designed and fabricated for the demonstration. It is found from the numerical simulation that the beam focusing through the planar lens with large number of layers is clearly confirmed in both magnitude and phase distribution of the fields. On the other hand, for small number of layers, the beam spot is not found in the magnitude distribution due to the effect of discontinuities between air and designed structure at the top and bottom surfaces, but is still found in the phase distribution. The effect of number of stacked layers on the propagation characteristics is discussed by comparing the numerical simulation results with the measurement.
Ken HORIKAWA Tetsuya UEDA Masahiro AKIYAMA
Beam steering of leaky wave radiation from a nonreciprocal composite right/left handed transmission line with a ferrite substrate is proposed. The nonreciprocal phase constants of the line were tuned by changing the applied DC magnetic field normal to the ferrite substrate. In the numerical simulation and the experiment, the nonreciprocal phase characteristics and leaky wave radiation are investigated for the ferrite substrate with the magnetization not only in the saturated region, but also in the unsaturated region. The numerical simulation results are in good agreement with the measurement. It is confirmed that the beam directions of the obliquely unidirectional leaky wave radiation for two different power directions are continuously tunable.
Kensuke OKUBO Mitsuyoshi KISHIHARA Akifumi IKEDA Jiro YAMAKITA Isao OHTA
A composite right/left-handed transmission line (CRLH-TL) using substrate integrated waveguide (SIW) with floating-conductor (SIW-type CRLH-TL) for microwave and millimeter wave frequencies has been proposed by the authors. This paper proposes a new configuration that is shield type of the SIW-type CRLH-TL, which can suppress the radiation from the exposed floating-conductors, and shows that even if the shielded structure is used, the SIW-type CRLH-TL supports the LH mode as well as the prototype. Proposed CRLH-TL consists of a SIW with slot apertures (part 1), a dielectric film with floating-conductors (part 2) and a SIW without lower conductor (part 3). A shielded SIW-type CRLH-TL for X--K band (with wide LH mode bandwidth of 6 GHz and transition frequency of 16 GHz) that satisfies the balance condition is designed. Dispersion diagram and S-parameters are derived numerically, and typical field distributions of RH and LH transmission and the zeroth-order resonance are shown. Measured result agrees well with theoretical result, by considering the accuracy performance and loss factors of the fabricated CRLH-TL. Proposed CRLH-TL has advantage of simple manufacturing, because the parts 1--3 are composed of simple planar periodic structure. It is expected to be one of the basic structure of CRLH-TL or components such as LH coupler above 10 GHz or millimeter wave frequency.
This study proposes a method to decompose a signal into a set of periodic signals. The proposed decomposition method imposes a penalty on the resultant periodic subsignals in order to improve the sparsity of decomposition and avoid the overestimation of periods. This penalty is defined as the weighted sum of the l2 norms of the resultant periodic subsignals. This decomposition is approximated by an unconstrained minimization problem. In order to solve this problem, a relaxation algorithm is applied. In the experiments, decomposition results are presented to demonstrate the simultaneous detection of periods and waveforms hidden in signal mixtures.
Transmission line metamaterials on coplanar waveguide with series-capacitive and shunt-inductive distributed loading in periodical intervals are characterized using our developed fullwave self-calibrated method of moments. Firstly, the two effective per-unit-length transmission parameters, i.e., complex propagation constant and characteristic impedance, are numerically extracted. The results provide a straightforward insight into the forward- and backward-wave propagation characteristics in several distinctive bands, including the left- and right-handed stopbands and passbands. In particular, it is demonstrated that in the whole left-handed passband, the propagation constant has purely negative phase constant while the characteristic impedance has only positive real quantity. Next, varied left- and right-handed passbands are studied in terms of lower/higher cut-off frequencies based on ideal equivalent circuit model and practical distributed CPW elements, respectively. Of particular importance, the left-handed and right-handed passbands find to be able to be directly connected with a seamless bandgap under the condition that normalized inductance and capacitance of loaded CPW inductive and capacitive elements become exactly the same with each other. Finally, the 9-cell metamaterial circuits on CPW with actual 50 Ω feed lines are designed and implemented for experimental validation on the derived per-unit-length parameters.
Himal C. JAYATILAKA David M. KLYMYSHYN
A periodically loaded ultra wideband (UWB) bandpass filter based on the electromagnetic band-gap (EBG) concept is presented. Compact wideband filters with steep transition bands can be designed easily using this novel methodology. Unit cells in the EBG circuit model are realized by capacitive and inductive parallel loading of a transmission line. These unit cells are cascaded to realize bandpass filters whose bandwidth depends on the reactive loading of unit cells. The number of unit cells determines the steepness of the band edges of the filter. The main advantage lies in the fact that the size of unit cells can be small because electrical length of transmission line segments in unit cells can be chosen arbitrarily, hence the final filter structure becomes small in size. A microstrip filter with 60% bandwidth is designed and the physical size is compared with a conventional wideband bandpass filter designed with quarter wavelength admittance inverters.
This paper treats transmission characteristics of periodic structure of ferrite gyrator circuit with both theory and experiment, which is loaded into usual distributed constant line with and without lumped capacitor. Following three types of periodic structure of gyrator circuit are proposed: basic structure of periodic gyrator circuit, quasi-LH gyrator circuit with series capacitance loading, and quasi-LH gyrator circuit with parallel capacitance loading. Moreover, replacing the parallel capacitance with a resistance, a periodic structure of isolator circuit is proposed. Scattering parameters of gyrator circuit are derived with help of equivalent circuit model. Left handed transmission behavior of backward wave is discussed from dispersion curves. Experiments were undertaken using periodic structure of dielectric microstrip line and gyrator circuit fabricated on the ferrite substrate. Experimental results having wide band nonreciprocal characteristics are discussed with theory.
A nonreciprocal left-handed transmission line is proposed and investigated, which is composed of a normally magnetized ferrite microstrip line periodically loaded with inductive stubs but without capacitive loading. The circuit configuration becomes simpler than that of a nonreciprocal left-handed transmission line with both shunt inductive and series capacitive loadings. In the proposed structure, ferrite medium is employed as the substrate not only for the nonreciprocal characteristics but also for negative effective permeability that is essential to establish the left-handedness. After calculations of dispersion curves using equivalent circuit model, scattering parameters along with field patterns are estimated numerically with the help of electromagnetic simulation, and the experiments are also carried out. It is found that the band width of the proposed left-handed transmission line is relatively narrow but the structure still has the high isolation ratio of more than 30 dB.
Chin-Jui LAI Ching-Her LEE Chung-I G. HSU Jean-Fu KIANG
A mode-matching technique in conjunction with the Floquet theorem is proposed to analyze the propagation characteristics of periodic circular surface waveguides. The circular waveguides are coated outside with a multilayered dielectric and have a ground plane with periodic corrugation of arbitrary profile. Three different ground corrugation profiles are examined to demonstrate the influences of the corrugation shape, depth, and width, dielectric thickness, and relative permittivity on bandstop characteristics.
Periodically nonuniform coupled microstrip line (PNC-ML) loaded with transverse slits is characterized using the fullwave method of moments and short-open calibration technique. Guided-wave characteristics of both even- and odd-modes are thoroughly investigated in terms of two extracted per-unit-length transmission parameters, i.e., phase constants and characteristic impedances. As such, frequency-dependent coupling between the lines of the finite-extended PNCML is exposed via two dissimilar impedances. Meanwhile, two phase constants try to be equalized at a certain frequency by properly adjusting the slit depth and periodicity, aiming at realizing the transmission zero. Further, equivalent J-inverter network parameters of this finite-length PNCML are derived to reveal the relationship between the transmission zero and harmonic resonance. By allocating this zero to the frequency twice the fundamental passband, one-stage and two-stage PNCML filters are then designed, fabricated and measured to showcase the advantageous capacity of the proposed technique in harmonic suppression.