The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] polytope(6hit)

1-6hit
  • Triangle Projection Algorithm in ADMM-LP Decoding of LDPC Codes Open Access

    Yun JIANG  Huiyang LIU  Xiaopeng JIAO  Ji WANG  Qiaoqiao XIA  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2024/03/18
      Vol:
    E107-A No:8
      Page(s):
    1364-1368

    In this letter, a novel projection algorithm is proposed in which projection onto a triangle consisting of the three even-vertices closest to the vector to be projected replaces check polytope projection, achieving the same FER performance as exact projection algorithm in both high-iteration and low-iteration regime. Simulation results show that compared with the sparse affine projection algorithm (SAPA), it can improve the FER performance by 0.2 dB as well as save average number of iterations by 4.3%.

  • An Enhanced HDPC-EVA Decoder Based on ADMM

    Yujin ZHENG  Yan LIN  Zhuo ZHANG  Qinglin ZHANG  Qiaoqiao XIA  

     
    LETTER-Coding Theory

      Pubricized:
    2021/04/02
      Vol:
    E104-A No:10
      Page(s):
    1425-1429

    Linear programming (LP) decoding based on the alternating direction method of multipliers (ADMM) has proved to be effective for low-density parity-check (LDPC) codes. However, for high-density parity-check (HDPC) codes, the ADMM-LP decoder encounters two problems, namely a high-density check matrix in HDPC codes and a great number of pseudocodewords in HDPC codes' fundamental polytope. The former problem makes the check polytope projection extremely complex, and the latter one leads to poor frame error rates (FER) performance. To address these issues, we introduce the even vertex algorithm (EVA) into the ADMM-LP decoding algorithm for HDPC codes, named as HDPC-EVA. HDPC-EVA can reduce the complexity of the projection process and improve the FER performance. We further enhance the proposed decoder by the automorphism groups of codes, creating diversity in the parity-check matrix. The simulation results show that the proposed decoder is capable of cutting down the average decoding time for each iteration by 30%-60%, as well as achieving near maximum likelihood (ML) performance on some BCH codes.

  • A Fast Iterative Check Polytope Projection Algorithm for ADMM Decoding of LDPC Codes by Bisection Method Open Access

    Yan LIN  Qiaoqiao XIA  Wenwu HE  Qinglin ZHANG  

     
    LETTER-Information Theory

      Vol:
    E102-A No:10
      Page(s):
    1406-1410

    Using linear programming (LP) decoding based on alternating direction method of multipliers (ADMM) for low-density parity-check (LDPC) codes shows lower complexity than the original LP decoding. However, the development of the ADMM-LP decoding algorithm could still be limited by the computational complexity of Euclidean projections onto parity check polytope. In this paper, we proposed a bisection method iterative algorithm (BMIA) for projection onto parity check polytope avoiding sorting operation and the complexity is linear. In addition, the convergence of the proposed algorithm is more than three times as fast as the existing algorithm, which can even be 10 times in the case of high input dimension.

  • The Symmetric Quadratic Semi-Assignment Polytope

    Hiroo SAITO  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1227-1232

    We deal with quadratic semi-assignment problems with symmetric distances. This symmetry reduces the number of variables in its mixed integer programming formulation. We investigate a polytope arising from the problem, and obtain some basic polyhedral properties, the dimension, the affine hull, and certain facets through an isomorphic projection. We also present a class of facets.

  • Polyhedral Proof of a Characterization of Perfect Bidirected Graphs

    Yoshiko T. IKEBE  Akihisa TAMURA  

     
    PAPER

      Vol:
    E86-A No:5
      Page(s):
    1000-1007

    Bidirected graphs which are generalizations of undirected graphs, have three types of edges: (+,+)-edges, (-,-)-edges and (+,-)-edges. Undirected graphs are regarded as bidirected graphs whose edges are all of type (+,+). The notion of perfection of undirected graphs can be naturally extended to bidirected graphs in terms of polytopes. The fact that a bidirected graph is perfect if and only if the undirected graph obtained by replacing all edges to (+,+) is perfect was independently proved by several researchers. This paper gives a polyhedral proof of the fact and introduces some new knowledge on perfect bidirected graphs.

  • Structures of Triangulations of Points

    Keiko IMAI  

     
    INVITED SURVEY PAPER-Algorithms for Geometric Problems

      Vol:
    E83-D No:3
      Page(s):
    428-437

    Triangulations have been one of main research topics in computational geometry and have many applications in computer graphics, finite element methods, mesh generation, etc. This paper surveys properties of triangulations in the two- or higher-dimensional spaces. For triangulations of the planar point set, we have a good triangulation, called the Delaunay triangulation, which satisfies several optimality criteria. Based on Delaunay triangulations, many properties of planar triangulations can be shown, and a graph structure can be constructed for all planar triangulations. On the other hand, triangulations in higher dimensions are much more complicated than in planar cases. However, there does exist a subclass of triangulations, called regular triangulations, with nice structure, which is also touched upon.