1-7hit |
Kuan-Cheng YEH Chia-Hsing YANG Ming-Chun LEE Ta-Sung LEE Hsiang-Hsuan HUNG
To enhance safety and efficiency in the traffic environment, developing intelligent transportation systems (ITSs) is of paramount importance. In ITSs, roadside units (RSUs) are critical components that enable the environment awareness and connectivity via using radar sensing and communications. In this paper, we focus on RSUs with multiple radar systems. Specifically, we propose a parameter selection method of multiple radar systems to enhance the overall sensing performance. Furthermore, since different radars provide different sensing and tracking results, to benefit from multiple radars, we propose fusion algorithms to integrate the tracking results of different radars. We use two commercial frequency-modulated continuous wave (FMCW) radars to conduct experiments at Hsinchu city in Taiwan. The experimental results validate that our proposed approaches can improve the overall sensing performance.
Akihiko HIRATA Makoto NAKASHIZUKA Koji SUIZU Yoshikazu SUDO
This paper presents non-destructive millimeter-wave (MMW) imaging of sub-millimeter-wide cracks on a concrete surface covered with paper. We measured the near-field scattering of 76.5 GHz-MMW signals at concrete surface cracks for detection of the sub-millimeter-wide cracks. A decrease in the received signal magnitude by near-field scattering at the fine concrete surface crack was slight, which yielded an unclear MMW image contrast of fine cracks at the concrete surface. We have found that the received signal magnitude at concrete surface crack is larger than that at the surface without a crack, when the paper thickness is almost equal to n/4 of the effective wavelength of the MMW signal in the paper (n=1, 3, 5 ...), thus, making MMW image contrast at the surface crack reversed. By calculating the difference of two MMW images obtained from different paper thickness, we were able to improve the MMW image contrast at the surface crack by up to 3.3 dB.
Seongwook LEE Young-Jun YOON Seokhyun KANG Jae-Eun LEE Seong-Cheol KIM
In this paper, we propose a received signal interpolation method for enhancing the performance of multiple signal classification (MUSIC) algorithm. In general, the performance of the conventional MUSIC algorithm is very sensitive to signal-to-noise ratio (SNR) of the received signal. When array elements receive the signals with nonuniform SNR values, the resolution performance is degraded compared to elements receiving the signals with uniform SNR values. Hence, we propose a signal calibration technique for improving the resolution of the algorithm. First, based on original signals, rough direction of arrival (DOA) estimation is conducted. In this stage, using frequency-domain received signals, SNR values of each antenna element in the array are estimated. Then, a deteriorated element that has a relatively lower SNR value than those of the other elements is selected by our proposed scheme. Next, the received signal of the selected element is spatially interpolated based on the signals received from the neighboring elements and the DOA information extracted from the rough estimation. Finally, fine DOA estimation is performed again with the calibrated signal. Simulation results show that the angular resolution of the proposed method is better than that of the conventional MUSIC algorithm. Also, we apply the proposed scheme to actual data measured in the testing ground, and it gives us more enhanced DOA estimation result.
In cognitive radar systems (CRSs), target scattering coefficients (TSC) can be utilized to improve the performance of target identification and classification. This work considers the problem of TSC estimation for temporally correlated target. Multiple receive antennas are adopted to receive the echo waveforms, which are interfered by the signal-dependent clutter. Unlike existing estimation methods in time domain, a novel estimation method based on Kalman filtering (KF) is proposed in frequency domain to exploit the temporal TSC correlation, and reduce the complexity of subsequent waveform optimization. Additionally, to minimize the mean square error of estimated TSC at each KF iteration, in contrary to existing works, we directly model the design process as an optimization problem, which is non-convex and cannot be solved efficiently. Therefore, we propose a novel method, similar in some way to semi-definite programming (SDP), to convert the non-convex problem into a convex one. Simulation results demonstrate that the estimation performance can be significantly improved by the KF estimation with optimized waveform.
Hanchao ZHOU Ning ZHU Wei LI Zibo ZHOU Ning LI Junyan REN
A monolithic frequency synthesizer with wide tuning range, low phase noise and spurs was realized in 0.13,$mu$m CMOS technology. It consists of an analog PLL, a harmonic-rejection mixer and injection-locked frequency doublers to cover the whole 6--18,GHz frequency range. To achieve a low phase noise performance, a sub-sampling PLL with non-dividers was employed. The synthesizer can achieve phase noise $-$113.7,dBc/Hz@100,kHz in the best case and the reference spur is below $-$60,dBc. The core of the synthesizer consumes about 110,mA*1.2,V.
Shouhei KIDERA Takuya SAKAMOTO Satoshi SUGINO Toru SATO
UWB pulse radars that offer target shape estimation are promising as imaging techniques for household or rescue robots. We have already proposed an efficient algorithm for a shape estimation method SEABED which is a fast algorithm based on a reversible transform. SEABED extracts quasi wavefronts from received signals with the filter that matches the transmitted waveform. However, the scattered waveform is, in general, different from the transmitted one depending on the shape of targets. This difference causes estimation errors in SEABED. In this paper, we propose an accurate algorithm for a polygonal-target based on scattered waveform estimation. The proposed method is presented first, followed by results of numerical simulations and experiments that show the efficiency of the proposed method.
A new radar system is presented, which consists of one main radar and cooperative plural transponders. The transponders are integrated in the respective retrodirective antennas which are arranged beyond the horizon in such a manner as they surround the main radar. An algorithm for determining the three-dimensional target position is given. Computer simulations have been made for different target positions by assuming measurement errors. A target whose monostatic radar cross section is small or has been specially reduced by absorbing materials could be detected by this system if it is properly constructed.