The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] radiation pattern(28hit)

1-20hit(28hit)

  • Generation of Surface Wave in C-Band Automotive On-Glass Antenna and an Easily Realizable Suppression Method for Improving Antenna Characteristics

    Osamu KAGAYA  Keisuke ARAI  Takato WATANABE  Takuji ARIMA  Toru UNO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/08/02
      Vol:
    E105-B No:1
      Page(s):
    51-57

    In this paper, the influence of surface waves on the characteristics of on-glass antennas is clarified to enable appropriates design of C-band automotive on-glass antennas. Composite glasses are used in automotive windshields. These automotive composite glasses are composed of three layers. First, the surface wave properties of composite glass are investigated. Next, the effects of surface waves on the reflection coefficient characteristics of on-glass antennas are investigated. Finally, the antenna placement to reduce surface wave effect will be presented. Electromagnetic field analysis of a dipole antenna placed at the center of a 300mm × 300mm square flat composite glass showed that the electric field strength in the glass had ripples with the half wavelength period of the surface waves. Therefore, it was confirmed that standing waves are generated because of these surface waves. In addition, it is confirmed that ripples occur in the reflection coefficient at frequencies. Glass size is divisible by each of those guide wavelengths. Furthermore, it was clarified that the reflection coefficient fluctuates with respect to the distance between the antenna and a metal frame, which is attached to the end face in the direction perpendicular to the thickness of the glass because of the influence of standing waves caused by the surface waves; additionally, the reflection coefficient gets worse when the distance between the antenna and the metal frame is an integral multiple of one half wavelength. A similar tendency was observed in an electric field analysis using a model that was shaped like the actual windshield shape. Because radiation patterns also change as a result of the influence of surface waves and metal frames, the results imply that it is necessary to consider the actual device size and the metal frames when designing automotive on-glass antennas.

  • Calibration of a Digital Phased Array by Using NCO Phase Increasing Algorithm

    Lijie YANG  Ruirui DANG  Chunyi SONG  Zhiwei XU  

     
    PAPER-Sensing

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    948-955

    All digital phased arrays generate multiple beams concurrently through the digital beam forming technique, which features digital processing with multiple identical receiving/transmitting channels in RF or microwave frequencies. However, the performance of this process strongly depends on accurately matching the amplitude and phase of the channels, as mismatching is likely to degrade radar performance. In this paper, we present a method to calibrate receiving array by using NCO phase increasing algorithm, which simplifies array system by removing the external far-field calibration signals often needed in array systems. Both analysis and simulation results suggest that the proposed method attains better calibration performance than existing approaches, even with a low SNR input signal. Experiments also varify that the proposed calibration method is effective and achieves a desired radiation pattern. We can further boost calibration accuracy and reduce calibration time by programming NCO phase width and NCO phase resolution.

  • Element Gain Improvement for Phased Array Antenna Based on Radiation Pattern Reconfigurable Antenna

    Takashi MARUYAMA  Takashi UESAKA  Satoshi YAMAGUCHI  Masataka OTSUKA  Hiroaki MIYASHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/07/12
      Vol:
    E100-B No:1
      Page(s):
    148-157

    We propose a new configuration for phased array antennas. The proposal uses radiation pattern reconfigurable antennas as the antenna element to improve the gain on the scanning angle and to suppress the grating lobes of sparse phased array antennas. This configuration can reduce the element number because the desired gain of the total array can be achieved by using fewer elements. We demonstrate the concept by designing a radiation pattern reconfigurable Yagi-Uda antenna. PIN diode switches are added to the parasitic elements to change director and reflector. The switches of multiple array elements are concurrently controlled by just a single one-pair line. This control structure is simple and can be applied to large-scale arrays. The proposed antenna yields an element gain that almost matches the theoretical limit across about half the coverage, even if the element spacing is enlarged to 1λ. If the switch states are interchanged, the gain in the mirror direction can be increased. We design a 48-element array and compare its gain against those of normal dipole antennas. We also fabricate the proposed antenna and demonstrate radiation pattern switching.

  • Classification of Electromagnetic Radiation Source Models Based on Directivity with the Method of Machine Learning

    Zhuo LIU  Dan SHI  Yougang GAO  Junjian BI  Zhiliang TAN  Jingjing SHI  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1227-1234

    This paper presents a new way to classify different radiation sources by the parameter of directivity, which is a characteristic parameter of electromagnetic radiation sources. The parameter can be determined from measurements of the electric field intensity radiating in all directions in space. We develop three basic antenna models, which are for 3GHz operation, and set 125,000 groups of cube receiving arrays along the main lobe of their radiation patterns to receive the data of far field electric intensity in groups. Then the Back Propagation (BP) neural network and the Support Vector Machine (SVM) method are adopted to analyze training data set, and build and test the classification model. Owing to the powerful nonlinear simulation ability, the SVM method offers higher classification accuracy than the BP neural network in noise environment. At last, the classification model is comprehensively evaluated in three aspects, which are capability of noise immunity, F1 measure and the normalization method.

  • Design of Circularly Polarized and Electrically Small Antenna with Omnidirectional Radiation Pattern

    Kittima LERTSAKWIMARN  Chuwong PHONGCHAROENPANICH  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:12
      Page(s):
    2739-2746

    This paper presents an electrically small and circularly polarized antenna with an omnidirectional radiation pattern. The antenna consists of a horizontal loop element enclosed by two U-shaped elements and a vertical element from the feeding point. The radiation pattern of the circular polarization is omnidirectional and has a maximum gain of -2dBic in parallel to the ground plane at the 900MHz band. The antenna dimensions are 48 × 20 × 13.8mm (0.14λ × 0.06λ × 0.04λ) with ka =0.476 (i.e. < 0.5), where k is the wavenumber at the resonant frequency and a is the radius of a sphere surrounding the antenna. The dimension corresponds to the definition of an electrically small antenna. The omnidirectional circularly polarized pattern of a prototype antenna shows good agreement with that of the simulation. In addition, this paper introduces a mechanism that generates omnidirectional circular polarization from electrically small antennas.

  • S-Parameter Method and Its Application for Antenna Measurements Open Access

    Takayuki SASAMORI  Toru FUKASAWA  

     
    INVITED PAPER

      Vol:
    E97-B No:10
      Page(s):
    2011-2021

    This paper focuses on the S-parameter method that is a basic method for measuring the input impedance of balanced-fed antennas. The basic concept of the method is summarized using the two-port network, and it is shown that the method can be enhanced to the unbalanced antennas using a formulation based on incident and reflected waves. The compensation method that eliminates the influence of a measurement jig and the application of the S-parameter method for the measurement of a radiation pattern with reduced unbalanced currents are explained. Further, application of the method for measuring the reflection and coupling coefficients of multiple antennas is introduced. The measured results of the input impedance of a dipole antenna, radiation patterns of a helical antenna on a small housing, and S-parameters of multiple antennas on a small housing are examined, and the measured results obtained with the S-parameter method are verified.

  • Mutual Coupling Reduction between Closely-Placed MSAs for Bi-Static Radar Using Wave Absorber

    Takenori YASUZUMI  Koudai TAKAHASHI  Naoki SANO  Ryosuke SUGA  Osamu HASHIMOTO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:1
      Page(s):
    77-83

    This paper presents a new simple method for reducing mutual coupling between dual-element microstrip antennas (MSAs) for bistatic radar using a wave absorber. The two elements are closely placed on a substrate by the distance of λ0/4 through the wall-shaped absorber. The height and width of the absorber were optimized for minimum mutual coupling with the electromagnetic simulator. It was found that less than -60 dB minimum mutual coupling can be achieved by the impedance matching of the absorber in a near field. The influence for the reflection characteristics from the absorber is small enough, and the reduction of the antenna gain is only 1.1 dB. The rate of the lost power characteristics showed that the absorption improves the mutual couplings. Then the proposed structure for a practical configuration was investigated. The measurement results of the optimized structure tallied well with the simulation results.

  • Dual-Band Magnetic Loop Antenna with Monopolar Radiation Using Slot-Loaded Composite Right/Left-Handed Structures

    Seongmin PYO  Min-Jae LEE  Kyoung-Joo LEE  Young-Sik KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:2
      Page(s):
    627-630

    A novel dual-band magnetic loop antenna is proposed using slot-loaded composite right/left-handed (SL-CRLH) structures. Since each radiating element consists of a symmetrically-array of unit-cells, a dual-band magnetic loop source is obtained with unchanged beam patterns. Simulations and measurements show its good radiation performance with monopole-like radiation patterns in both operating bands.

  • Directivity Control by Asymmetrically Fed Dipole Antenna with PIN Diode Switches

    Yuuya HOSHINO  Akira SAITOU  Kazuhiko HONJO  

     
    LETTER-Antennas

      Vol:
    E95-B No:1
      Page(s):
    106-108

    A feed-point-selective, asymmetrically fed dipole antenna has been proposed for multiple-input multiple-output (MIMO) applications. By using PIN diode switches, an asymmetrical antenna feed is realized so as to control antenna directivities. The two basic requirements for MIMO antenna radiation patterns, namely, a decrease in overlap and control in direction, have been achieved. Additionally, to enhance directivities for the antenna with PIN diodes, a reflector has been introduced. The gain toward the reflector decreased by 2 dB, while the gain in the direction of the maximum gain increased by 2 dB. The developed antenna can correspond to a variable power angular spectrum (PAS).

  • A Low-Profile Dual-Polarized Directional Antenna for Enhancing Channel Capacity in Indoor MIMO Systems

    Daisuke UCHIDA  Hiroyuki ARAI  Yuki INOUE  Keizo CHO  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2570-2577

    The use of directional antenna and polarization diversity techniques has been reported to achieve good MIMO performance. Low-profile, small structures are required to configure the MIMO antenna with these techniques. First, we assume downlink transmission in indoor MIMO systems and present the design guidelines for the radiation pattern to obtain large channel capacity by the ray-tracing method. We then propose a uni-directional, dual-polarized MIMO antenna with a thickness of 0.24λ based on the design guidelines. The proposed antenna consists of dipole antennas mounted horizontally to the ground plane and cavity backed slot antennas for vertical polarization. We apply the proposed antenna to 2 2 MIMO transmission and demonstrate the effectiveness of channel capacity enhancement in an actual environment. The improvement factor is revealed to be +16.2% with place averaged value compared to sleeve antenna configuration.

  • Linearly Tapered Slot Antenna with Defected Sides for Gain Improvement

    Seongmin PYO  Dae-Myoung IN  In-Chul SHIN  Young-Sik KIM  

     
    LETTER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2655-2657

    A new linearly tapered slot antenna (LTSA) with defected sides is proposed in this letter. Both sides are defected with half-dumbbell shape slots that may alter the surface current intensities on both sides. As the half-dumbbell size is increased, the 3-dB beamwidth of the proposed antenna is 4° and 6° lower in the E/H-plane, respectively, than these of the LTSA without defects. Accordingly, the measured gain is improved by up to 3.75 dB and the first side lobe level is lowered by about -10.8 dB and -5.8 dB in the E/H-planes, respectively.

  • "The Center of Scattering"--Where is the Center of a Polygonal Cylinder for Electromagnetic Scattering ?--

    Masahiro HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E93-C No:1
      Page(s):
    74-76

    Phase information on wave scattering is not unique and greatly depends on a choice of the origin of coordinates in the measurement system. The present paper argues that the center of scattering for polygonal cylinders should not be a geometrical center of the obstacle such as a center of gravity but be a position that acts as a balance to the electrostatic field effects from edge points. The position is exactly determined in terms of edge positions, edge parameters and lengths of side of polygons. A few examples are given to illustrate a difference from the center of geometry.

  • Compact Multimode Horn with Coaxial Corrugation for Circular Coverage

    Takashi KOBAYASHI  Hiroyuki DEGUCHI  Mikio TSUJI  Kouhei OMORI  

     
    PAPER

      Vol:
    E93-C No:1
      Page(s):
    32-38

    For achieving low cross-polarization component in addition to circular-coverage pattern in compact structure, this paper proposes a novel multimode horn with arbitrary coaxial-corrugation configuration which plays two roles of mode converters and chokes. The proposed horn can be designed by iteration of non-linear optimization procedure based on generalized scattering matrices pre-calculated by the mode-matching technique. We show a compact horn with four coaxial corrugations for shaping circular-coverage beam over frequency range of bandwidth 20%. The effectiveness of the designed horn is discussed by evaluating VSWR and radiation characteristics in X-band numerically and experimentally.

  • Some Remarks on the Extension of Numerical Data to the Complex Space for Radiation Patterns in Electromagnetic Scattering Problems

    Masahiro HASHIMOTO  

     
    LETTER

      Vol:
    E92-C No:1
      Page(s):
    109-111

    A numerical scheme for the analytic continuation of radiation patterns of the azimuthal coordinate θ into the whole space over the complex plane is given. The scattering data given over the real space [0, 2π] are extended into the complex plane by using the recurrence formulas. An example shows the validity of mathematically exact evaluation for the scattering from polygonal cylinders.

  • Improvement of Beam Scanning Characteristics of a Dielectric Lens Antenna by Array Feeds

    Yousuke TAJIMA  Yoshihide YAMADA  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1616-1624

    In the Intelligent Transportation System, millimeter waves are used and antennas are required beam scanning ability. In the millimeter wave operation, a lens antenna is one of the prominent candidates which achieves wide angle beam scanning. Wide angle scanning can be achieved by introducing Abbe sine condition to lens surface shaping. Authors designed the shaped lens antenna that could achieve beam scanning 30. The narrow beam widths were maintained on the scanning plane. However, the beam widths were broadened on the transverse plane and large gain reduction was appeared. It was clarified that the reason of this beam deterioration was due to the phase delay on the antenna aperture. In this paper, an array feed composed of a group of rectangular horns is employed to compensate the phase delay on the antenna aperture. In designing the array feed, because there were no examples of phase radiation pattern synthesis, a new radiation pattern synthesis method is studied. Ability of the weighting matrix contained in the Least Mean Square synthesis method is paid attention. Adequate weighting matrix is found out. Satisfactory phase radiation pattern that can compensate the phase delay and an adequate amplitude radiation pattern are achieved. As a result, the improvement of scanned beam widths and antenna gains through the array feed are ensured. And adequate horn arrangements of the array feed for improving scanned beam are clarified. Moreover, in order to examine the realization of an actual array feed, the exact electromagnetic simulation is conducted. The validity of the radiation pattern synthesis is clarified.

  • Investigation of Electromagnetic Characteristics for Mobile Handsets with Monopole-Type and Inverted-F Wire Antennas

    Jeong I. KIM  Dongweon YOON  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:4
      Page(s):
    1239-1242

    Comparison of the electromagnetic characteristics of a monopole-type wire antenna (MTWA) and an inverted-F wire antenna (IFWA) is performed based on numerical and experimental results. Radiation characteristics, when the handset model is located in the vicinity of a head phantom or in free space, are also investigated. The gain of 8.27 dBi is achieved at 3.4 GHz for the MTWA with the head phantom.

  • Low-Sidelobe Multimode Horn Design for Circular Coverage Based on Quadratic Programming Approach

    Hiroyuki DEGUCHI  Mikio TSUJI  Hiroaki WATANABE  

     
    PAPER-Antenna Theory

      Vol:
    E91-C No:1
      Page(s):
    3-8

    To obtain a broad circular-coverage beam with low sidelobe, this paper proposes optimization design based on the quadratic programming approach for circular horns. The desired excitation coefficients of higher-order modes are pre-determined and also evaluated by calculating universal radiation patterns. We show a design example of a multimode horn which has circular-coverage beam with low sidelobe level of about -30 dB. The effectiveness of the designed horn is discussed by evaluating VSWR and radiation characteristics in X-band numerically and experimentally.

  • Calculation of Wide Angle Radiation Patterns and Caustics of a Dielectric Lens Antenna by a Ray Tracing Method

    Yousuke TAJIMA  Yoshihide YAMADA  Seigo SASAKI  Atsushi KEZUKA  

     
    PAPER-Antennas, Circuits and Receivers

      Vol:
    E87-C No:9
      Page(s):
    1432-1440

    Recently, dielectric lens antennas are paid attentions in ITS applications. Many lens shape designing methods were already developed. And electrical performances were estimated through a ray tracing method. Here, arbitral lens shapes were expressed by a system of power series. In the case of ray tracing, time-consuming three-coordinate root-finder programs were needed to find intersection points of rays on the lens surfaces. In order to calculate complicated structures such as zoned lenses and complicated rays such as multiple reflections between lens surfaces, simple ray tracing methods are requested. In this paper, a simple ray tracing method that utilizes directly designed discrete points of lens surfaces is developed. In this method, a refracted ray is automatically determined for a given incident ray. As for an intersecting point of a lens surface for an outgoing ray, the nearest point to the refracted vector is found out by employing a simple searching procedure. This method is time-saving compared to the previous three-coordinate root-finding program. Through calculated results of focal points and radiation patterns in wide angle beam steering, effectiveness of a developed method is ensured. Application of the developed ray tracing method of complicated multiple reflections are studied. Reflecting points are found out speedily by the same searching procedure. A calculated example of doubly reflected rays is obtained. Through comparing calculated and measured results of wide angle radiation patterns, effectiveness of a developed method is ensured.

  • Multimode Horn with Low Cross Polarization Optimized for Dual-Band Use

    Hiroyuki DEGUCHI  Takaharu GOTO  Mikio TSUJI  Hiroshi SHIGESAWA  Soichi MATSUMOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E87-B No:9
      Page(s):
    2777-2782

    A multimode horn with both a low cross-polarization component less than -30 dB and good VSWR characteristics has been realized at frequency bands 8.6-9.8 GHz and 10.75-11.15 GHz. The improved performance of the proposed horn is verified by comparing with the previous dual-band double-flared horn. The design method for such a horn is based on the mode-matching approach combined with the optimization procedure. This paper proposes an objective function taking account of a spill-over loss and a rotational symmetry in the radiated field instead of an ideal radiation pattern. The effectiveness of our horn is verified by comparison between experimental results in the X band and predicted ones.

  • Radiation Pattern of the Rectangular Microstrip Antenna on Anisotropy Substrates with an Air Gap and Dielectric Superstrate

    Joong Han YOON  Hwa Choon LEE  Kyung Sup KWAK  

     
    LETTER-Electromagnetic Theory

      Vol:
    E86-C No:10
      Page(s):
    2145-2150

    This study investigate the rectangular microstrip patch antenna on anisotropy substrates with superstrate and air gap, based on rigorous full-wave analysis and Galerkin's moment method. Results show that radiation patterns with varying air gap, permittivity of the superstrate and substrate, and thickness of the superstrate can be determined and analyzed.

1-20hit(28hit)