The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] region(190hit)

1-20hit(190hit)

  • Convolutional Neural Network Based on Regional Features and Dimension Matching for Skin Cancer Classification Open Access

    Zhichao SHA  Ziji MA  Kunlai XIONG  Liangcheng QIN  Xueying WANG  

     
    PAPER-Image

      Vol:
    E107-A No:8
      Page(s):
    1319-1327

    Diagnosis at an early stage is clinically important for the cure of skin cancer. However, since some skin cancers have similar intuitive characteristics, and dermatologists rely on subjective experience to distinguish skin cancer types, the accuracy is often suboptimal. Recently, the introduction of computer methods in the medical field has better assisted physicians to improve the recognition rate but some challenges still exist. In the face of massive dermoscopic image data, residual network (ResNet) is more suitable for learning feature relationships inside big data because of its deeper network depth. Aiming at the deficiency of ResNet, this paper proposes a multi-region feature extraction and raising dimension matching method, which further improves the utilization rate of medical image features. This method firstly extracted rich and diverse features from multiple regions of the feature map, avoiding the deficiency of traditional residual modules repeatedly extracting features in a few fixed regions. Then, the fused features are strengthened by up-dimensioning the branch path information and stacking it with the main path, which solves the problem that the information of two paths is not ideal after fusion due to different dimensionality. The proposed method is experimented on the International Skin Imaging Collaboration (ISIC) Archive dataset, which contains more than 40,000 images. The results of this work on this dataset and other datasets are evaluated to be improved over networks containing traditional residual modules and some popular networks.

  • MCGCN: Multi-Correlation Graph Convolutional Network for Pedestrian Attribute Recognition

    Yang YU  Longlong LIU  Ye ZHU  Shixin CEN  Yang LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/11/29
      Vol:
    E107-D No:3
      Page(s):
    400-410

    Pedestrian attribute recognition (PAR) aims to recognize a series of a person's semantic attributes, e.g., age, gender, which plays an important role in video surveillance. This paper proposes a multi-correlation graph convolutional network named MCGCN for PAR, which includes a semantic graph, visual graph, and synthesis graph. We construct a semantic graph by using attribute features with semantic constraints. A graph convolution is employed, based on prior knowledge of the dataset, to learn the semantic correlation. 2D features are projected onto visual graph nodes and each node corresponds to the feature region of each attribute group. Graph convolution is then utilized to learn regional correlation. The visual graph nodes are connected to the semantic graph nodes to form a synthesis graph. In the synthesis graph, regional and semantic correlation are embedded into each other through inter-graph edges, to guide each other's learning and to update the visual and semantic graph, thereby constructing semantic and regional correlation. On this basis, we use a better loss weighting strategy, the suit_polyloss, to address the imbalance of pedestrian attribute datasets. Experiments on three benchmark datasets show that the proposed approach achieves superior recognition performance compared to existing technologies, and achieves state-of-the-art performance.

  • Universal Angle Visibility Realized by a Volumetric 3D Display Using a Rotating Mirror-Image Helix Screen Open Access

    Karin WAKATSUKI  Chiemi FUJIKAWA  Makoto OMODANI  

     
    INVITED PAPER

      Pubricized:
    2023/08/03
      Vol:
    E107-C No:2
      Page(s):
    23-28

    Herein, we propose a volumetric 3D display in which cross-sectional images are projected onto a rotating helix screen. The method employed by this display can enable image observation from universal directions. A major challenge associated with this method is the presence of invisible regions that occur depending on the observation angle. This study aimed to fabricate a mirror-image helix screen with two helical surfaces coaxially arranged in a plane-symmetrical configuration. The visible region was actually measured to be larger than the visible region of the conventional helix screen. We confirmed that the improved visible region was almost independent of the observation angle and that the visible region was almost equally wide on both the left and right sides of the rotation axis.

  • Fusion-Based Edge and Color Recovery Using Weighted Near-Infrared Image and Color Transmission Maps for Robust Haze Removal

    Onhi KATO  Akira KUBOTA  

     
    PAPER

      Pubricized:
    2023/05/23
      Vol:
    E106-D No:10
      Page(s):
    1661-1672

    Various haze removal methods based on the atmospheric scattering model have been presented in recent years. Most methods have targeted strong haze images where light is scattered equally in all color channels. This paper presents a haze removal method using near-infrared (NIR) images for relatively weak haze images. In order to recover the lost edges, the presented method first extracts edges from an appropriately weighted NIR image and fuses it with the color image. By introducing a wavelength-dependent scattering model, our method then estimates the transmission map for each color channel and recovers the color more naturally from the edge-recovered image. Finally, the edge-recovered and the color-recovered images are blended. In this blending process, the regions with high lightness, such as sky and clouds, where unnatural color shifts are likely to occur, are effectively estimated, and the optimal weighting map is obtained. Our qualitative and quantitative evaluations using 59 pairs of color and NIR images demonstrated that our method can recover edges and colors more naturally in weak haze images than conventional methods.

  • Metropolitan Area Network Model Design Using Regional Railways Information for Beyond 5G Research Open Access

    Takuji TACHIBANA  Yusuke HIROTA  Keijiro SUZUKI  Takehiro TSURITANI  Hiroshi HASEGAWA  

     
    POSITION PAPER-Network

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    296-306

    To accelerate research on Beyond 5G (B5G) technologies in Japan, we propose an algorithm that designs mesh-type metropolitan area network (MAN) models based on a priori Japanese regional railway information, because ground-truth communication network information is unavailable. Instead, we use the information of regional railways, which is expected to express the necessary geometric structure of our metropolitan cities while remaining strongly correlated with their population densities and demographic variations. We provide an additional compression algorithm for use in reducing a small-scale network model from the original MAN model designed using the proposed algorithm. Two Tokyo MAN models are created, and we provide day and night variants for each while highlighting the number of passengers alighting/boarding at each station and the respective population densities. The validity of the proposed algorithm is verified through comparisons with the Japan Photonic Network model and another model designed using the communication network information, which is not ground-truth. Comparison results show that our proposed algorithm is effective for designing MAN models and that our result provides a valid Tokyo MAN model.

  • Split and Eliminate: A Region-Based Segmentation for Hardware Trojan Detection

    Ann Jelyn TIEMPO  Yong-Jin JEONG  

     
    PAPER-Dependable Computing

      Pubricized:
    2022/12/09
      Vol:
    E106-D No:3
      Page(s):
    349-356

    Using third-party intellectual properties (3PIP) has been a norm in IC design development process to meet the time-to-market demand and at the same time minimizing the cost. But this flow introduces a threat, such as hardware trojan, which may compromise the security and trustworthiness of underlying hardware, like disclosing confidential information, impeding normal execution and even permanent damage to the system. In years, different detections methods are explored, from just identifying if the circuit is infected with hardware trojan using conventional methods to applying machine learning where it identifies which nets are most likely are hardware trojans. But the performance is not satisfactory in terms of maximizing the detection rate and minimizing the false positive rate. In this paper, a new hardware trojan detection approach is proposed where gate-level netlist is segmented into regions first before analyzing which nets might be hardware trojans. The segmentation process depends on the nets' connectivity, more specifically by looking on each fanout points. Then, further analysis takes place by means of computing the structural similarity of each segmented region and differentiate hardware trojan nets from normal nets. Experimental results show 100% detection of hardware trojan nets inserted on each benchmark circuits and an overall average of 1.38% of false positive rates which resulted to a higher accuracy with an average of 99.31%.

  • A Multi-Modal Fusion Network Guided by Feature Co-Occurrence for Urban Region Function Recognition

    Nenghuan ZHANG  Yongbin WANG  Xiaoguang WANG  Peng YU  

     
    PAPER-Multimedia Pattern Processing

      Pubricized:
    2022/07/25
      Vol:
    E105-D No:10
      Page(s):
    1769-1779

    Recently, multi-modal fusion methods based on remote sensing data and social sensing data have been widely used in the field of urban region function recognition. However, due to the high complexity of noise problem, most of the existing methods are not robust enough when applied in real-world scenes, which seriously affect their application value in urban planning and management. In addition, how to extract valuable periodic feature from social sensing data still needs to be further study. To this end, we propose a multi-modal fusion network guided by feature co-occurrence for urban region function recognition, which leverages the co-occurrence relationship between multi-modal features to identify abnormal noise feature, so as to guide the fusion network to suppress noise feature and focus on clean feature. Furthermore, we employ a graph convolutional network that incorporates node weighting layer and interactive update layer to effectively extract valuable periodic feature from social sensing data. Lastly, experimental results on public available datasets indicate that our proposed method yeilds promising improvements of both accuracy and robustness over several state-of-the-art methods.

  • Numerical Analysis of Pulse Response for Slanted Grating Structure with an Air Regions in Dispersion Media by TE Case Open Access

    Ryosuke OZAKI  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Pubricized:
    2021/10/18
      Vol:
    E105-C No:4
      Page(s):
    154-158

    In our previous paper, we have proposed a new numerical technique for transient scattering problem of periodically arrayed dispersion media by using a combination of the fast inversion Laplace transform (FILT) method and Fourier series expansion method (FSEM), and analyzed the pulse response for several widths of the dispersion media or rectangular cavities. From the numerical results, we examined the influence of a periodically arrayed dispersion media with a rectangular cavity on the pulse response. In this paper, we analyzed the transient scattering problem for the case of dispersion media with slanted air regions by utilizing a combination of the FILT, FSEM, and multilayer division method (MDM), and investigated an influence for the slanted angle of an air region. In addition, we verified the computational accuracy for term of the MDM and truncation mode number of the electromagnetic fields.

  • A Two-Sources Estimator Based on the Expectation of Permitted Permutations Count in Complex Networks

    Liang ZHU  Youguo WANG  Jian LIU  

     
    LETTER-Graphs and Networks

      Pubricized:
    2020/08/20
      Vol:
    E104-A No:2
      Page(s):
    576-581

    Identifying the infection sources in a network, including the sponsor of a network rumor, the servers that inject computer virus into a computer network, or the zero-patient in an infectious disease network, plays a critical role in limiting the damage caused by the infection. A two-source estimator is firstly constructed on basis of partitions of infection regions in this paper. Meanwhile, the two-source estimation problem is transformed into calculating the expectation of permitted permutations count which can be simplified to a single-source estimation problem under determined infection region. A heuristic algorithm is also proposed to promote the estimator to general graphs in a Breadth-First-Search (BFS) fashion. Experimental results are provided to verify the performance of our method and illustrate variations of error detection in different networks.

  • Single Image Haze Removal Using Iterative Ambient Light Estimation with Region Segmentation

    Yuji ARAKI  Kentaro MITA  Koichi ICHIGE  

     
    PAPER-Image

      Pubricized:
    2020/08/06
      Vol:
    E104-A No:2
      Page(s):
    550-562

    We propose an iterative single-image haze-removal method that first divides images with haze into regions in which haze-removal processing is difficult and then estimates the ambient light. The existing method has a problem wherein it often overestimates the amount of haze in regions where there is a large distance between the location the photograph was taken and the subject of the photograph; this problem prevents the ambient light from being estimated accurately. In particular, it is often difficult to accurately estimate the ambient light of images containing white and sky regions. Processing those regions in the same way as other regions has detrimental results, such as darkness or unnecessary color change. The proposed method divides such regions in advance into multiple small regions, and then, the ambient light is estimated from the small regions in which haze removal is easy to process. We evaluated the proposed method through some simulations, and found that the method achieves better haze reduction accuracy even than the state-of-the art methods based on deep learning.

  • Fundamental Limits of Biometric Identification System Under Noisy Enrollment

    Vamoua YACHONGKA  Hideki YAGI  

     
    PAPER-Information Theory

      Pubricized:
    2020/07/14
      Vol:
    E104-A No:1
      Page(s):
    283-294

    In this study, we investigate fundamental trade-off among identification, secrecy, template, and privacy-leakage rates in biometric identification system. Ignatenko and Willems (2015) studied this system assuming that the channel in the enrollment process of the system is noiseless and they did not consider the template rate. In the enrollment process, however, it is highly considered that noise occurs when bio-data is scanned. In this paper, we impose a noisy channel in the enrollment process and characterize the capacity region of the rate tuples. The capacity region is proved by a novel technique via two auxiliary random variables, which has never been seen in previous studies. As special cases, the obtained result shows that the characterization reduces to the one given by Ignatenko and Willems (2015) where the enrollment channel is noiseless and there is no constraint on the template rate, and it also coincides with the result derived by Günlü and Kramer (2018) where there is only one individual.

  • Generative Adversarial Network Using Weighted Loss Map and Regional Fusion Training for LDR-to-HDR Image Conversion

    Sung-Woon JUNG  Hyuk-Ju KWON  Dong-Min SON  Sung-Hak LEE  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2020/08/18
      Vol:
    E103-D No:11
      Page(s):
    2398-2402

    High dynamic range (HDR) imaging refers to digital image processing that modifies the range of color and contrast to enhance image visibility. To create an HDR image, two or more images that include various information are needed. In order to convert low dynamic range (LDR) images to HDR images, we consider the possibility of using a generative adversarial network (GAN) as an appropriate deep neural network. Deep learning requires a great deal of data in order to build a module, but once the module is created, it is convenient to use. In this paper, we propose a weight map for local luminance based on learning to reconstruct locally tone-mapped images.

  • A Visual Inspection System for Accurate Positioning of Railway Fastener

    Jianwei LIU  Hongli LIU  Xuefeng NI  Ziji MA  Chao WANG  Xun SHAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/07/17
      Vol:
    E103-D No:10
      Page(s):
    2208-2215

    Automatic disassembly of railway fasteners is of great significance for improving the efficiency of replacing rails. The accurate positioning of fastener is the key factor to realize automatic disassembling. However, most of the existing literature mainly focuses on fastener region positioning and the literature on accurate positioning of fasteners is scarce. Therefore, this paper constructed a visual inspection system for accurate positioning of fastener (VISP). At first, VISP acquires railway image by image acquisition subsystem, and then the subimage of fastener can be obtained by coarse-to-fine method. Subsequently, the accurate positioning of fasteners can be completed by three steps, including contrast enhancement, binarization and spike region extraction. The validity and robustness of the VISP were verified by vast experiments. The results show that VISP has competitive performance for accurate positioning of fasteners. The single positioning time is about 260ms, and the average positioning accuracy is above 90%. Thus, it is with theoretical interest and potential industrial application.

  • Experimental Evaluation of Intersymbol Interference in Non-Far Region Transmission using a Large Array Antenna in the Millimeter-Wave Band

    Tuchjuta RUCKKWAEN  Takashi TOMURA  Kiyomichi ARAKI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/04/02
      Vol:
    E103-B No:10
      Page(s):
    1136-1146

    Intersymbol interference (ISI) is a significant source of degradation in many digital communication systems including our proposed non-far region communication system using large array antennas in the millimeter-wave band in which the main cause of ISI can be attributed to the path delay differences among the elements of an array antenna. This paper proposes a quantitative method to evaluate the ISI estimated from the measured near-field distribution of the array antenna. The influence of the uniformity in the aperture field distribution in ISI is discussed and compared with an ideally uniform excitation. The reliability of the proposed method is verified through a comparison with another method based on direct measurements of the transmission between the actual antennas. Finally, the signal to noise plus interference is evaluated based on the estimated ISI results and ISI is shown to be the dominant cause of the degradation in the reception zone of the system.

  • Chaos-Chaos Intermittency Synchronization Induced by Feedback Signals and Stochastic Noise in Coupled Chaotic Systems Open Access

    Sou NOBUKAWA  Nobuhiko WAGATSUMA  Haruhiko NISHIMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E103-A No:9
      Page(s):
    1086-1094

    Various types of synchronization phenomena have been reported in coupled chaotic systems. In recent years, the applications of these phenomena have been advancing for utilization in sensor network systems, secure communication systems, and biomedical systems. Specifically, chaos-chaos intermittency (CCI) synchronization is a characterized synchronization phenomenon. Previously, we proposed a new chaos control method, termed as the “reduced region of orbit (RRO) method,” to achieve CCI synchronization using external feedback signals. This method has been gathering research attention because of its ability to induce CCI synchronization; this can be achieved even if internal system parameters cannot be adjusted by external factors. Further, additive stochastic noise is known to have a similar effect. The objective of this study was to compare the performance of the RRO method and the method that applies stochastic noise, both of which are capable of inducing CCI synchronization. The results showed that even though CCI synchronization can be realized using both control methods under the induced attractor merging condition, the RRO method possesses higher adoptability and accomplishes a higher degree of CCI synchronization compared to additive stochastic noise. This advantage might facilitate the application of synchronization in coupled chaotic systems.

  • Content-Based Superpixel Segmentation and Matching Using Its Region Feature Descriptors

    Jianmei ZHANG  Pengyu WANG  Feiyang GONG  Hongqing ZHU  Ning CHEN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2020/04/27
      Vol:
    E103-D No:8
      Page(s):
    1888-1900

    Finding the correspondence between two images of the same object or scene is an active research field in computer vision. This paper develops a rapid and effective Content-based Superpixel Image matching and Stitching (CSIS) scheme, which utilizes the content of superpixel through multi-features fusion technique. Unlike popular keypoint-based matching method, our approach proposes a superpixel internal feature-based scheme to implement image matching. In the beginning, we make use of a novel superpixel generation algorithm based on content-based feature representation, named Content-based Superpixel Segmentation (CSS) algorithm. Superpixels are generated in terms of a new distance metric using color, spatial, and gradient feature information. It is developed to balance the compactness and the boundary adherence of resulted superpixels. Then, we calculate the entropy of each superpixel for separating some superpixels with significant characteristics. Next, for each selected superpixel, its multi-features descriptor is generated by extracting and fusing local features of the selected superpixel itself. Finally, we compare the matching features of candidate superpixels and their own neighborhoods to estimate the correspondence between two images. We evaluated superpixel matching and image stitching on complex and deformable surfaces using our superpixel region descriptors, and the results show that new method is effective in matching accuracy and execution speed.

  • Data Hiding in Computer-Generated Stained Glass Images and Its Applications to Information Protection

    Shi-Chei HUNG  Da-Chun WU  Wen-Hsiang TSAI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2020/01/15
      Vol:
    E103-D No:4
      Page(s):
    850-865

    The two issues of art image creation and data hiding are integrated into one and solved by a single approach in this study. An automatic method for generating a new type of computer art, called stained glass image, which imitates the stained-glass window picture, is proposed. The method is based on the use of a tree structure for region growing to construct the art image. Also proposed is a data hiding method which utilizes a general feature of the tree structure, namely, number of tree nodes, to encode the data to be embedded. The method can be modified for uses in three information protection applications, namely, covert communication, watermarking, and image authentication. Besides the artistic stego-image content which may distract the hacker's attention to the hidden data, data security is also considered by randomizing both the input data and the seed locations for region growing, yielding a stego-image which is robust against the hacker's attacks. Good experimental results proving the feasibility of the proposed methods are also included.

  • Salient Region Detection with Multi-Feature Fusion and Edge Constraint

    Cheng XU  Wei HAN  Dongzhen WANG  Daqing HUANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2020/01/17
      Vol:
    E103-D No:4
      Page(s):
    910-913

    In this paper, we propose a salient region detection method with multi-feature fusion and edge constraint. First, an image feature extraction and fusion network based on dense connection structure and multi-channel convolution channel is designed. Then, a multi-scale atrous convolution block is applied to enlarge reception field. Finally, to increase accuracy, a combined loss function including classified loss and edge loss is built for multi-task training. Experimental results verify the effectiveness of the proposed method.

  • Achievable Rate Regions for Source Coding with Delayed Partial Side Information Open Access

    Tetsunao MATSUTA  Tomohiko UYEMATSU  

     
    PAPER-Shannon Theory

      Vol:
    E102-A No:12
      Page(s):
    1631-1641

    In this paper, we consider a source coding with side information partially used at the decoder through a codeword. We assume that there exists a relative delay (or gap) of the correlation between the source sequence and side information. We also assume that the delay is unknown but the maximum of possible delays is known to two encoders and the decoder, where we allow the maximum of delays to change by the block length. In this source coding, we give an inner bound and an outer bound on the achievable rate region, where the achievable rate region is the set of rate pairs of encoders such that the decoding error probability vanishes as the block length tends to infinity. Furthermore, we clarify that the inner bound coincides with the outer bound when the maximum of delays for the block length converges to a constant.

  • Attention-Guided Region Proposal Network for Pedestrian Detection

    Rui SUN  Huihui WANG  Jun ZHANG  Xudong ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/07/08
      Vol:
    E102-D No:10
      Page(s):
    2072-2076

    As a research hotspot and difficulty in the field of computer vision, pedestrian detection has been widely used in intelligent driving and traffic monitoring. The popular detection method at present uses region proposal network (RPN) to generate candidate regions, and then classifies the regions. But the RPN produces many erroneous candidate areas, causing region proposals for false positives to increase. This letter uses improved residual attention network to capture the visual attention map of images, then normalized to get the attention score map. The attention score map is used to guide the RPN network to generate more precise candidate regions containing potential target objects. The region proposals, confidence scores, and features generated by the RPN are used to train a cascaded boosted forest classifier to obtain the final results. The experimental results show that our proposed approach achieves highly competitive results on the Caltech and ETH datasets.

1-20hit(190hit)